IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i24p16989-d1007307.html
   My bibliography  Save this article

Assessment and Adjustment of Export Embodied Carbon Emissions with Its Domestic Spillover Effects: Case Study of Liaoning Province, China

Author

Listed:
  • Shuangjie Xu

    (Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
    School of Geographical Sciences, Liaoning Normal University, Dalian 116029, China)

  • Hao Cheng

    (Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China)

  • Menghan Zhang

    (Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
    College of Resource and Environment, University of Chinese Academy of Sciences, Beijing 100049, China)

  • Kexin Guo

    (Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
    College of Resource and Environment, University of Chinese Academy of Sciences, Beijing 100049, China)

  • Qian Liu

    (Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
    College of Resource and Environment, University of Chinese Academy of Sciences, Beijing 100049, China)

  • Yuan Gao

    (School of Geographical Sciences, Liaoning Normal University, Dalian 116029, China)

Abstract

Export embodied carbon emissions (EECE) and their domestic spillover effects (DSE) are typical interregional carbon transfer phenomena. They have diversified impacts for different regions within a country, and result in the associated effect on the economy and environment. From 2007 to 2017, the EECE of China was mainly concentrated in five provinces, and EECE intensity mostly decreased. Liaoning Province had the largest EECE intensity and EECE growth from 2012 to 2017. Based on the multi-region input-output tables of China, we applied the Multi-region Input-output Model and constructed the Coupling Relationship Model for trade value and carbon emission, quantitatively assessed the EECE and its DSE for Liaoning Province, depicted the spatial-temporal evolution patterns, proposed sectoral adjustment countermeasures, and evaluated the adjustment effects. The research found that the EECE and its DSE of Liaoning Province was 32.08 MtCO 2 and 5.43 MtCO 2 in 2017. It was mainly concentrated in the metal smelting and rolling processing sector (MetalSmelt) and the petroleum processing, coking and nuclear fuel processing sectors (RefPetral). The spatial agglomeration effect was obvious, and Jilin Province was the largest DSE region. According to the Coupling Relationship Model of export trade value and export embodied carbon emissions, the sectors were divided into four types, and different adjustment countermeasures were proposed, such as encouragement, control, targeted promotion and targeted reduction. For the MetalSmelt and the RefPetral, if the export value reduced 100 million CNY, the EECE would be reduced by 21.57 ktCO 2 and 23.35 ktCO 2 , respectively, and the DSE would be reduced by 1.59 ktCO 2 and 1.65 ktCO 2 , respectively. The conclusions could provide a decision-making basis for the case area to formulate lower-cost and better-effective carbon reduction adjustment countermeasures. It could also provide reference and scientific support for the achievement of “Carbon Neutrality” and sustainable development in similar regions of the world with the rapid growth of EECE.

Suggested Citation

  • Shuangjie Xu & Hao Cheng & Menghan Zhang & Kexin Guo & Qian Liu & Yuan Gao, 2022. "Assessment and Adjustment of Export Embodied Carbon Emissions with Its Domestic Spillover Effects: Case Study of Liaoning Province, China," Sustainability, MDPI, vol. 14(24), pages 1-16, December.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:24:p:16989-:d:1007307
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/24/16989/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/24/16989/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Peng Chen & Hanwen Wang & Mingxing Guo & Jianjun Wang & Sinan Cai & Min Li & Kaining Sun & Yukun Wang, 2022. "Decomposition Analysis of Regional Embodied Carbon Flow and Driving Factors—Taking Shanghai as an Example," Sustainability, MDPI, vol. 14(17), pages 1-16, September.
    2. Zhong, Zhangqi & Jiang, Lei & Zhou, Peng, 2018. "Transnational transfer of carbon emissions embodied in trade: Characteristics and determinants from a spatial perspective," Energy, Elsevier, vol. 147(C), pages 858-875.
    3. Zhijian Chen & Li Zhang & Yujie Zhang & Yun Zhao & Zhangqi Zhong, 2022. "Regional Differences in the Emission-Reduction Effect of Environmental Regulation Based on the Perspective of Embodied Carbon Spatial Transfer Formed by Inter-Regional Trade," Sustainability, MDPI, vol. 14(15), pages 1-15, August.
    4. Qiang Zhang & Xujia Jiang & Dan Tong & Steven J. Davis & Hongyan Zhao & Guannan Geng & Tong Feng & Bo Zheng & Zifeng Lu & David G. Streets & Ruijing Ni & Michael Brauer & Aaron van Donkelaar & Randall, 2017. "Transboundary health impacts of transported global air pollution and international trade," Nature, Nature, vol. 543(7647), pages 705-709, March.
    5. Li Li & Yalin Lei & Chunyan He & Sanmang Wu & Jiabin Chen, 2017. "Study on the CO2 emissions embodied in the trade of China’s steel industry: based on the input–output model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 86(3), pages 989-1005, April.
    6. Yang, Xue & Su, Bin, 2019. "Impacts of international export on global and regional carbon intensity," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    7. Lin, Boqiang & Sun, Chuanwang, 2010. "Evaluating carbon dioxide emissions in international trade of China," Energy Policy, Elsevier, vol. 38(1), pages 613-621, January.
    8. Guo, Ju’e & Zhang, Zengkai & Meng, Lei, 2012. "China’s provincial CO2 emissions embodied in international and interprovincial trade," Energy Policy, Elsevier, vol. 42(C), pages 486-497.
    9. Yuantao Yang & Shen Qu & Bofeng Cai & Sai Liang & Zhaohua Wang & Jinnan Wang & Ming Xu, 2020. "Mapping global carbon footprint in China," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    10. Meng, Bo & Xue, Jinjun & Feng, Kuishuang & Guan, Dabo & Fu, Xue, 2013. "China’s inter-regional spillover of carbon emissions and domestic supply chains," Energy Policy, Elsevier, vol. 61(C), pages 1305-1321.
    11. Arce, Guadalupe & López, Luis Antonio & Guan, Dabo, 2016. "Carbon emissions embodied in international trade: The post-China era," Applied Energy, Elsevier, vol. 184(C), pages 1063-1072.
    12. Xia Tong & Yutong Gu & Tingting Jin & Shenrong Gao, 2022. "Embodied Carbon Emissions in Export of Yangtze River Delta: Calculation and Decomposition of Driving Factors," Sustainability, MDPI, vol. 14(19), pages 1-11, September.
    13. Shihong Zeng & Gen Li & Shaomin Wu & Zhanfeng Dong, 2022. "The Impact of Green Technology Innovation on Carbon Emissions in the Context of Carbon Neutrality in China: Evidence from Spatial Spillover and Nonlinear Effect Analysis," IJERPH, MDPI, vol. 19(2), pages 1-25, January.
    14. Xu, Ming & Li, Ran & Crittenden, John C. & Chen, Yongsheng, 2011. "CO2 emissions embodied in China's exports from 2002 to 2008: A structural decomposition analysis," Energy Policy, Elsevier, vol. 39(11), pages 7381-7388.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Su, Bin & Thomson, Elspeth, 2016. "China's carbon emissions embodied in (normal and processing) exports and their driving forces, 2006–2012," Energy Economics, Elsevier, vol. 59(C), pages 414-422.
    2. Wang, Haikun & Zhang, Yanxia & Lu, Xi & Nielsen, Chris P. & Bi, Jun, 2015. "Understanding China׳s carbon dioxide emissions from both production and consumption perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 189-200.
    3. Meng, Bo & Wang, Jianguo & Andrew, Robbie & Xiao, Hao & Xue, Jinjun & Peters, Glen P., 2017. "Spatial spillover effects in determining China's regional CO2 emissions growth: 2007–2010," Energy Economics, Elsevier, vol. 63(C), pages 161-173.
    4. Ren, Shenggang & Yuan, Baolong & Ma, Xie & Chen, Xiaohong, 2014. "The impact of international trade on China׳s industrial carbon emissions since its entry into WTO," Energy Policy, Elsevier, vol. 69(C), pages 624-634.
    5. Hehua Zhao & Hongwen Chen & Lei He, 2022. "Embodied Carbon Emissions and Regional Transfer Characteristics—Evidence from China," Sustainability, MDPI, vol. 14(4), pages 1-20, February.
    6. Das, Aparna & Paul, Saikat Kumar, 2014. "CO2 emissions from household consumption in India between 1993–94 and 2006–07: A decomposition analysis," Energy Economics, Elsevier, vol. 41(C), pages 90-105.
    7. Zhang, Youguo & Tang, Zhipeng, 2015. "Driving factors of carbon embodied in China's provincial exports," Energy Economics, Elsevier, vol. 51(C), pages 445-454.
    8. Boya Zhang & Shukuan Bai & Yadong Ning & Tao Ding & Yan Zhang, 2020. "Emission Embodied in International Trade and Its Responsibility from the Perspective of Global Value Chain: Progress, Trends, and Challenges," Sustainability, MDPI, vol. 12(8), pages 1-26, April.
    9. Ling, Zaili & Huang, Tao & Li, Jixiang & Zhou, Sheng & Lian, Lulu & Wang, Jinxiang & Zhao, Yuan & Mao, Xiaoxuan & Gao, Hong & Ma, Jianmin, 2019. "Sulfur dioxide pollution and energy justice in Northwestern China embodied in West-East Energy Transmission of China," Applied Energy, Elsevier, vol. 238(C), pages 547-560.
    10. Qi, Tianyu & Winchester, Niven & Karplus, Valerie J. & Zhang, Xiliang, 2014. "Will economic restructuring in China reduce trade-embodied CO2 emissions?," Energy Economics, Elsevier, vol. 42(C), pages 204-212.
    11. Hehua Zhao & Hongwen Chen & Ying Fang & Apei Song, 2022. "Transfer Characteristics of Embodied Carbon Emissions in Export Trade—Evidence from China," Sustainability, MDPI, vol. 14(13), pages 1-21, June.
    12. Peng Chen & Hanwen Wang & Mingxing Guo & Jianjun Wang & Sinan Cai & Min Li & Kaining Sun & Yukun Wang, 2022. "Decomposition Analysis of Regional Embodied Carbon Flow and Driving Factors—Taking Shanghai as an Example," Sustainability, MDPI, vol. 14(17), pages 1-16, September.
    13. Xu, Dongxiao & Li, Yaoguang & Zhao, Mingyuan & Wang, Xinjing & Zhang, Yan & Chen, Bin & Yang, Zhifeng, 2022. "Spatial characteristics analysis of sectoral carbon transfer path in international trade: A comparison of the United States and China," Applied Energy, Elsevier, vol. 323(C).
    14. Zhang, Bo & Yang, T.R. & Chen, B. & Sun, X.D., 2016. "China’s regional CH4 emissions: Characteristics, interregional transfer and mitigation policies," Applied Energy, Elsevier, vol. 184(C), pages 1184-1195.
    15. Liu, Hongguang & Liu, Weidong & Fan, Xiaomei & Zou, Wei, 2015. "Carbon emissions embodied in demand–supply chains in China," Energy Economics, Elsevier, vol. 50(C), pages 294-305.
    16. Zhang, Yanxia & Wang, Haikun & Liang, Sai & Xu, Ming & Liu, Weidong & Li, Shalang & Zhang, Rongrong & Nielsen, Chris P. & Bi, Jun, 2014. "Temporal and spatial variations in consumption-based carbon dioxide emissions in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 60-68.
    17. Bai, Hongtao & Feng, Xiangyu & Hou, Huimin & He, Gang & Dong, Yan & Xu, He, 2018. "Mapping inter-industrial CO2 flows within China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 400-408.
    18. Su, Bin & Ang, B.W. & Low, Melissa, 2013. "Input–output analysis of CO2 emissions embodied in trade and the driving forces: Processing and normal exports," Ecological Economics, Elsevier, vol. 88(C), pages 119-125.
    19. Wen Wen & Qi Wang, 2017. "Are Developed Regions in China Achieving Their CO 2 Emissions Reduction Targets on Their Own?—Case of Beijing," Energies, MDPI, vol. 10(12), pages 1-25, November.
    20. Fan, Xiaojia & Wu, Sanmang & Li, Shantong, 2019. "Spatial-temporal analysis of carbon emissions embodied in interprovincial trade and optimization strategies: A case study of Hebei, China," Energy, Elsevier, vol. 185(C), pages 1235-1249.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:24:p:16989-:d:1007307. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.