IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i22p15485-d979914.html
   My bibliography  Save this article

Effect of PdNiBi Metal Content: Cost Reduction in Alkaline Direct Ethanol Fuel Cells

Author

Listed:
  • Michaela Roschger

    (Institute of Chemical Engineering and Environmental Technology, Graz University of Technology, Inffeldgasse 25/C, 8010 Graz, Austria)

  • Sigrid Wolf

    (Institute of Chemical Engineering and Environmental Technology, Graz University of Technology, Inffeldgasse 25/C, 8010 Graz, Austria)

  • Boštjan Genorio

    (Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia)

  • Viktor Hacker

    (Institute of Chemical Engineering and Environmental Technology, Graz University of Technology, Inffeldgasse 25/C, 8010 Graz, Austria)

Abstract

In this work, the metal content of Pd 85 Ni 10 Bi 5 /C catalysts for the alkaline ethanol-oxidation reaction was reduced from 40 wt.% (PdNiBi/C (40/60)) to 30 wt.% (PdNiBi/C (30/70)), 20 wt.% (PdNiBi/C (20/80)) and 10 wt.% (PdNiBi/C (10/90)), while increasing performance. The synthesized catalysts were examined using physicochemical measurements and electrochemical measurements. The best performing catalysts were used to fabricate membrane electrode assemblies for carrying out single-cell tests and to determine the influence of the metal/carbon ratio of the electrode. The electrochemical surface area (695 cm 2 mg −1 ) and activity were increased, resulting in high peak-current densities for the ethanol oxidation reaction (3.72 A mg −1 ) by the resulting more accessible metal particles. The electrode produced with the PdNiBi/C (30/70) catalyst reached a maximum power density of 34.8 mW mg −1 at 50 °C. This successfully demonstrated a doubling of the power density compared with the performance of the PdNiBi/C (40/60) electrode, while simultaneously reducing the costs.

Suggested Citation

  • Michaela Roschger & Sigrid Wolf & Boštjan Genorio & Viktor Hacker, 2022. "Effect of PdNiBi Metal Content: Cost Reduction in Alkaline Direct Ethanol Fuel Cells," Sustainability, MDPI, vol. 14(22), pages 1-15, November.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:22:p:15485-:d:979914
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/22/15485/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/22/15485/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. An, L. & Zhao, T.S. & Li, Y.S., 2015. "Carbon-neutral sustainable energy technology: Direct ethanol fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1462-1468.
    2. Maximilian Grandi & Kurt Mayer & Matija Gatalo & Gregor Kapun & Francisco Ruiz-Zepeda & Bernhard Marius & Miran Gaberšček & Viktor Hacker, 2021. "The Influence Catalyst Layer Thickness on Resistance Contributions of PEMFC Determined by Electrochemical Impedance Spectroscopy," Energies, MDPI, vol. 14(21), pages 1-18, November.
    3. Michaela Roschger & Sigrid Wolf & Kurt Mayer & Matthias Singer & Viktor Hacker, 2022. "Alkaline Direct Ethanol Fuel Cell: Effect of the Anode Flow Field Design and the Setup Parameters on Performance," Energies, MDPI, vol. 15(19), pages 1-16, October.
    4. Drew Shindell & Christopher J. Smith, 2019. "Climate and air-quality benefits of a realistic phase-out of fossil fuels," Nature, Nature, vol. 573(7774), pages 408-411, September.
    5. Panwar, N.L. & Kaushik, S.C. & Kothari, Surendra, 2011. "Role of renewable energy sources in environmental protection: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(3), pages 1513-1524, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wenran Gao & Hui Li & Karnowo & Bing Song & Shu Zhang, 2020. "Integrated Leaching and Thermochemical Technologies for Producing High-Value Products from Rice Husk: Leaching of Rice Husk with the Aqueous Phases of Bioliquids," Energies, MDPI, vol. 13(22), pages 1-15, November.
    2. Mahtta, Richa & Joshi, P.K. & Jindal, Alok Kumar, 2014. "Solar power potential mapping in India using remote sensing inputs and environmental parameters," Renewable Energy, Elsevier, vol. 71(C), pages 255-262.
    3. Jānis Krūmiņš & Māris Kļaviņš, 2023. "Investigating the Potential of Nuclear Energy in Achieving a Carbon-Free Energy Future," Energies, MDPI, vol. 16(9), pages 1-31, April.
    4. Karatayev, Marat & Clarke, Michèle L., 2016. "A review of current energy systems and green energy potential in Kazakhstan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 491-504.
    5. Hosseini, Seyed Ehsan & Wahid, Mazlan Abdul, 2014. "Development of biogas combustion in combined heat and power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 868-875.
    6. Kannan, Nadarajah & Vakeesan, Divagar, 2016. "Solar energy for future world: - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1092-1105.
    7. Dey, Subhashish & Sreenivasulu, Anduri & Veerendra, G.T.N. & Rao, K. Venkateswara & Babu, P.S.S. Anjaneya, 2022. "Renewable energy present status and future potentials in India: An overview," Innovation and Green Development, Elsevier, vol. 1(1).
    8. Aikifa Raza & Jin-You Lu & Safa Alzaim & Hongxia Li & TieJun Zhang, 2018. "Novel Receiver-Enhanced Solar Vapor Generation: Review and Perspectives," Energies, MDPI, vol. 11(1), pages 1-29, January.
    9. Sofia Dahlgren & Jonas Ammenberg, 2021. "Sustainability Assessment of Public Transport, Part II—Applying a Multi-Criteria Assessment Method to Compare Different Bus Technologies," Sustainability, MDPI, vol. 13(3), pages 1-30, January.
    10. Gao, Chunjiao & Chen, Hongxi, 2023. "Electricity from renewable energy resources: Sustainable energy transition and emissions for developed economies," Utilities Policy, Elsevier, vol. 82(C).
    11. Li, Xue & Lin, Cong & Wang, Yang & Zhao, Lingying & Duan, Na & Wu, Xudong, 2015. "Analysis of rural household energy consumption and renewable energy systems in Zhangziying town of Beijing," Ecological Modelling, Elsevier, vol. 318(C), pages 184-193.
    12. Nadine Székely & Jan vom Brocke, 2017. "What can we learn from corporate sustainability reporting? Deriving propositions for research and practice from over 9,500 corporate sustainability reports published between 1999 and 2015 using topic ," PLOS ONE, Public Library of Science, vol. 12(4), pages 1-27, April.
    13. Frank Hensgen & Michael Wachendorf, 2018. "Aqueous Leaching Prior to Dewatering Improves the Quality of Solid Fuels from Grasslands," Energies, MDPI, vol. 11(4), pages 1-13, April.
    14. Karunakaran Venkatesan & Uma Govindarajan & Padmanathan Kasinathan & Sanjeevikumar Padmanaban & Jens Bo Holm-Nielsen & Zbigniew Leonowicz, 2019. "Economic Analysis of HRES Systems with Energy Storage During Grid Interruptions and Curtailment in Tamil Nadu, India: A Hybrid RBFNOEHO Technique," Energies, MDPI, vol. 12(16), pages 1-26, August.
    15. Mumuh Muhsin Z. & Nina Herlina & Miftahul Falah & Etty Saringendyanti & Kunto Sofianto & Norlaila Md Zin, 2021. "Impact of Climate Change on Agriculture Sector of Malaysia," International Journal of Energy Economics and Policy, Econjournals, vol. 11(6), pages 138-144.
    16. Aldona Standar & Agnieszka Kozera & Łukasz Satoła, 2021. "The Importance of Local Investments Co-Financed by the European Union in the Field of Renewable Energy Sources in Rural Areas of Poland," Energies, MDPI, vol. 14(2), pages 1-23, January.
    17. Sara Sousa, 2021. "Environmental Taxation in Portugal: A Contribution to Sustainability," Eurasian Studies in Business and Economics, in: Mehmet Huseyin Bilgin & Hakan Danis & Ender Demir & Sofia Vale (ed.), Eurasian Economic Perspectives, pages 369-382, Springer.
    18. Aytav, Emre & Kocar, Günnur, 2013. "Biodiesel from the perspective of Turkey: Past, present and future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 335-350.
    19. Tükenmez, Mine & Demireli, Erhan, 2012. "Renewable energy policy in Turkey with the new legal regulations," Renewable Energy, Elsevier, vol. 39(1), pages 1-9.
    20. Stanisław Bielski & Renata Marks-Bielska & Anna Zielińska-Chmielewska & Kęstutis Romaneckas & Egidijus Šarauskis, 2021. "Importance of Agriculture in Creating Energy Security—A Case Study of Poland," Energies, MDPI, vol. 14(9), pages 1-20, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:22:p:15485-:d:979914. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.