IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i22p15281-d975892.html
   My bibliography  Save this article

Assessing Rail Station Accessibility Based on Improved Two-Step Floating Catchment Area Method and Map Service API

Author

Listed:
  • Daoyong Li

    (School of Architecture and Art, North China University of Technology, Beijing 100144, China)

  • Hengyi Zang

    (School of Architecture and Art, North China University of Technology, Beijing 100144, China)

  • Qilin He

    (School of Architecture and Art, North China University of Technology, Beijing 100144, China)

Abstract

Accessibility is an important index for evaluating the efficiency of rail stations. In view of the imbalance between the supply and demand of rail station settings and population distribution, this paper takes the Shijingshan District in Beijing as an example. Based on the Gaussian two-step floating catchment area method and Gaode map’s service interface, the accessibility of rail stations is simulated and analyzed in terms of both walking and riding. Combined with the calculation results, supply and demand relationship and trip time, the current characteristics and causes are analyzed, and the corresponding optimization suggestions are put forward. The main conclusions are as follows: (1) The accessibility distribution of rail stations in the Shijingshan District is relatively coordinated with the population distribution. The effectiveness of the accessibility assessment of rail stations can be further improved by improving the causal evaluation model with traditional calculation data; (2) The change of trip mode has a small impact on the accessibility of large stations, while small stations and areas with uneven station distribution can be improved by riding; (3) According to the K-value clustering method, the results of the two calculation methods are divided into five categories, and each category of demand units has different accessibility characteristics and causes; (4) Comprehensive accessibility is positively correlated with road density and population density.

Suggested Citation

  • Daoyong Li & Hengyi Zang & Qilin He, 2022. "Assessing Rail Station Accessibility Based on Improved Two-Step Floating Catchment Area Method and Map Service API," Sustainability, MDPI, vol. 14(22), pages 1-22, November.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:22:p:15281-:d:975892
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/22/15281/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/22/15281/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li, Linbo & Ren, Huan & Zhao, Shanshan & Duan, Zhengyu & Zhang, Yahua & Zhang, Anming, 2017. "Two dimensional accessibility analysis of metro stations in Xi’an, China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 106(C), pages 414-426.
    2. Chorus, Paul & Bertolini, Luca, 2011. "An application of the node-place model to explore the spatial development dynamics of station areas in Tokyo," The Journal of Transport and Land Use, Center for Transportation Studies, University of Minnesota, vol. 4(1), pages 45-58.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kelobonye, Keone & McCarney, Gary & Xia, Jianhong (Cecilia) & Swapan, Mohammad Shahidul Hasan & Mao, Feng & Zhou, Heng, 2019. "Relative accessibility analysis for key land uses: A spatial equity perspective," Journal of Transport Geography, Elsevier, vol. 75(C), pages 82-93.
    2. Wei Wu & Prasanna Divigalpitiya, 2022. "Assessment of Accessibility and Activity Intensity to Identify Future Development Priority TODs in Hefei City," Land, MDPI, vol. 11(9), pages 1-17, September.
    3. Jeffrey, Dana & Boulangé, Claire & Giles-Corti, Billie & Washington, Simon & Gunn, Lucy, 2019. "Using walkability measures to identify train stations with the potential to become transit oriented developments located in walkable neighbourhoods," Journal of Transport Geography, Elsevier, vol. 76(C), pages 221-231.
    4. Vale, David S. & Viana, Cláudia M. & Pereira, Mauro, 2018. "The extended node-place model at the local scale: Evaluating the integration of land use and transport for Lisbon's subway network," Journal of Transport Geography, Elsevier, vol. 69(C), pages 282-293.
    5. Jan Duffhues & Igor S Mayer & Merten Nefs & Mirte van der Vliet, 2014. "Breaking Barriers to Transit-Oriented Development: Insights from the Serious Game SPRINTCITY," Environment and Planning B, , vol. 41(5), pages 770-791, October.
    6. Verachtert, Els & Mayeres, Inge & Vermeiren, Karolien & Van der Meulen, Maarten & Vanhulsel, Marlies & Vanderstraeten, Geoffrey & Loris, Isabelle & Mertens, Geert & Engelen, Guy & Poelmans, Lien, 2023. "Mapping regional accessibility of public transport and services in support of spatial planning: A case study in Flanders," Land Use Policy, Elsevier, vol. 133(C).
    7. Zhou, Mingzhi & Zhou, Jiali & Zhou, Jiangping & Lei, Shuyu & Zhao, Zhan, 2023. "Introducing social contacts into the node-place model: A case study of Hong Kong," Journal of Transport Geography, Elsevier, vol. 107(C).
    8. Kim, Hyojin & Sultana, Selima & Weber, Joe, 2018. "A geographic assessment of the economic development impact of Korean high-speed rail stations," Transport Policy, Elsevier, vol. 66(C), pages 127-137.
    9. Arritokieta Eizaguirre-Iribar & Olatz Grijalba & Rufino Javier Hernández-Minguillón, 2020. "An Integrated Approach to Transportation and Land-Use Planning for the Analysis of Former Railway Nodes in Sustainable Transport Development: The Case of the Vasco-Navarro Railway," Sustainability, MDPI, vol. 13(1), pages 1-24, December.
    10. Zhang, Qian & Liu, Xiaoxiao & Spurgeon, Sarah & Yu, Dingli, 2021. "A two-layer modelling framework for predicting passenger flow on trains: A case study of London underground trains," Transportation Research Part A: Policy and Practice, Elsevier, vol. 151(C), pages 119-139.
    11. Pezeshknejad, Parsa & Monajem, Saeed & Mozafari, Hamid, 2020. "Evaluating sustainability and land use integration of BRT stations via extended node place model, an application on BRT stations of Tehran," Journal of Transport Geography, Elsevier, vol. 82(C).
    12. Du, Zhouyang & Tang, Jinjun & Qi, Yong & Wang, Yiwei & Han, Chunyang & Yang, Yifan, 2020. "Identifying critical nodes in metro network considering topological potential: A case study in Shenzhen city—China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 539(C).
    13. Benjamin Büttner & Julia Kinigadner & Chenyi Ji & Benjamin Wright & Gebhard Wulfhorst, 2018. "The TUM Accessibility Atlas: Visualizing Spatial and Socioeconomic Disparities in Accessibility to Support Regional Land-Use and Transport Planning," Networks and Spatial Economics, Springer, vol. 18(2), pages 385-414, June.
    14. Liudan Jiao & Liyin Shen & Chenyang Shuai & Yongtao Tan & Bei He, 2017. "Measuring Crowdedness between Adjacent Stations in an Urban Metro System: a Chinese Case Study," Sustainability, MDPI, vol. 9(12), pages 1-14, December.
    15. Li, Zekun & Han, Zixuan & Xin, Jing & Luo, Xin & Su, Shiliang & Weng, Min, 2019. "Transit oriented development among metro station areas in Shanghai, China: Variations, typology, optimization and implications for land use planning," Land Use Policy, Elsevier, vol. 82(C), pages 269-282.
    16. Svetla STOILOVA & Radina NIKOLOVA, 2016. "Classifying Railway Passenger Stations For Use Transport Planning – Application To Bulgarian Railway Network," Transport Problems, Silesian University of Technology, Faculty of Transport, vol. 11(2), pages 143-155, June.
    17. Li, Wu & Guan, Haotian & Qin, Wenwen & Ji, Xiaofeng, 2023. "Collective and individual spatial equity measure in public transit accessibility based on generalized travel cost," Research in Transportation Economics, Elsevier, vol. 98(C).
    18. Zhang, Yuerong & Marshall, Stephen & Manley, Ed, 2019. "Network criticality and the node-place-design model: Classifying metro station areas in Greater London," Journal of Transport Geography, Elsevier, vol. 79(C), pages 1-1.
    19. Ortuño-Padilla, Armando & Espinosa-Flor, Aitor & Cerdán-Aznar, Lara, 2017. "“Development strategies at station areas in southwestern China: The case of Mianyang city”," Land Use Policy, Elsevier, vol. 68(C), pages 660-670.
    20. Morikawa, So & Aoyama, Miwa & Kato, Hironori, 2023. "Development of railway station plazas: Impact on land prices of surrounding areas," Transport Policy, Elsevier, vol. 142(C), pages 1-14.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:22:p:15281-:d:975892. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.