IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i22p15165-d973915.html
   My bibliography  Save this article

Research on Accounting and Transfer Pathways of Embodied Carbon Emissions from Construction Industry in China

Author

Listed:
  • Yuan Qi

    (School of Civil Engineering, North China University of Technology, Beijing 100144, China)

  • Yuxin Xia

    (School of Economics Management, Beijing Jiaotong University, Beijing 100091, China)

Abstract

In recent years, China has taken the issue of excessive CO 2 emissions very seriously, and the construction industry is a key sector in its efforts to reduce carbon emissions. This research constructed a multi-regional input-output (MRIO) model to estimate the carbon emissions from the construction industry, and analyze the spatial and industrial transfer pathways of the carbon emissions from the inter-regional construction industry. The following findings were obtained in this study: (1) Based on the consumption-side accounting, the amount of embodied carbon emissions that were switched to China’s construction industry massively exceeded that of embodied carbon emissions that were transferred from it. (2) A large amount of embodied carbon emissions was transferred from the energy industry, heavy industry, and manufacturing in the resource-rich region to the construction industry in the economically developed coastal region and the southwest region with a defective industrial structure. The above findings provided a theoretical basis for the allocation of construction industry’s carbon emission reduction responsibilities. Accordingly, this paper put forward policy suggestions that could optimize the carbon emission reduction plans in the construction industry.

Suggested Citation

  • Yuan Qi & Yuxin Xia, 2022. "Research on Accounting and Transfer Pathways of Embodied Carbon Emissions from Construction Industry in China," Sustainability, MDPI, vol. 14(22), pages 1-12, November.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:22:p:15165-:d:973915
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/22/15165/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/22/15165/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shan, Yuli & Liu, Jianghua & Liu, Zhu & Xu, Xinwanghao & Shao, Shuai & Wang, Peng & Guan, Dabo, 2016. "New provincial CO2 emission inventories in China based on apparent energy consumption data and updated emission factors," Applied Energy, Elsevier, vol. 184(C), pages 742-750.
    2. Leontief, Wassily, 1970. "Environmental Repercussions and the Economic Structure: An Input-Output Approach," The Review of Economics and Statistics, MIT Press, vol. 52(3), pages 262-271, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chunli Jin & Qiaoqiao Zhu & Hui Sun, 2023. "Temporal and Spatial Divergence of Embodied Carbon Emissions Transfer and the Drivers—Evidence from China’s Domestic Trade," Sustainability, MDPI, vol. 15(9), pages 1-19, May.
    2. Ya-Li Liu & Jin-Rong Zhang & Hong-Bo Li, 2025. "Has Digital Industrialization Promoted Carbon Emission Reduction in the Construction Industry?," Sustainability, MDPI, vol. 17(7), pages 1-23, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ou, Jiamin & Meng, Jing & Zheng, Junyu & Mi, Zhifu & Bian, Yahui & Yu, Xiang & Liu, Jingru & Guan, Dabo, 2017. "Demand-driven air pollutant emissions for a fast-developing region in China," Applied Energy, Elsevier, vol. 204(C), pages 131-142.
    2. Duan, Cuncun & Chen, Bin & Feng, Kuishuang & Liu, Zhu & Hayat, Tasawar & Alsaedi, Ahmed & Ahmad, Bashir, 2018. "Interregional carbon flows of China," Applied Energy, Elsevier, vol. 227(C), pages 342-352.
    3. Jingyao Peng & Yidi Sun & Junnian Song & Wei Yang, 2020. "Exploring Potential Pathways toward Energy-Related Carbon Emission Reduction in Heavy Industrial Regions of China: An Input–Output Approach," Sustainability, MDPI, vol. 12(5), pages 1-20, March.
    4. Meng, Jing & Zhang, Zengkai & Mi, Zhifu & Anadon, Laura Diaz & Zheng, Heran & Zhang, Bo & Shan, Yuli & Guan, Dabo, 2018. "The role of intermediate trade in the change of carbon flows within China," Energy Economics, Elsevier, vol. 76(C), pages 303-312.
    5. Zhang, Xiaomei & Su, Bin & Yang, Jun & Cong, Jianhui, 2022. "Analysis of Shanxi Province's energy consumption and intensity using input-output framework (2002–2017)," Energy, Elsevier, vol. 250(C).
    6. Yan, Junna & Su, Bin, 2020. "Spatial differences in energy performance among four municipalities of China: From both the aggregate and final demand perspectives," Energy, Elsevier, vol. 204(C).
    7. Tianrui Wang & Yu Chen & Leya Zeng, 2022. "Spatial-Temporal Evolution Analysis of Carbon Emissions Embodied in Inter-Provincial Trade in China," IJERPH, MDPI, vol. 19(11), pages 1-26, June.
    8. Taelim Choi & Randall W. Jackson & Nancey Green Leigh & Christa D. Jensen, 2011. "A Baseline Input—Output Model with Environmental Accounts (IOEA) Applied to E-Waste Recycling," International Regional Science Review, , vol. 34(1), pages 3-33, January.
    9. Hongyang Qiao & Sanmang Wu, 2025. "Decoupling Factor Analysis for Sustainable Development in China’s Four Municipalities Using the Tapio Model," Sustainability, MDPI, vol. 17(6), pages 1-26, March.
    10. Teng, Meixuan & Burke, Paul J. & Liao, Hua, 2019. "The demand for coal among China's rural households: Estimates of price and income elasticities," Energy Economics, Elsevier, vol. 80(C), pages 928-936.
    11. Daniel Moran & Richard Wood, 2014. "Convergence Between The Eora, Wiod, Exiobase, And Openeu'S Consumption-Based Carbon Accounts," Economic Systems Research, Taylor & Francis Journals, vol. 26(3), pages 245-261, September.
    12. Arik Levinson, 2009. "Technology, International Trade, and Pollution from US Manufacturing," American Economic Review, American Economic Association, vol. 99(5), pages 2177-2192, December.
    13. Li, Yilin & Chen, Bin & Li, Chaohui & Li, Zhi & Chen, Guoqian, 2020. "Energy perspective of Sino-US trade imbalance in global supply chains," Energy Economics, Elsevier, vol. 92(C).
    14. Zhu, Bangzhu & Su, Bin & Li, Yingzhu & Ng, Tsan Sheng, 2020. "Embodied energy and intensity in China’s (normal and processing) exports and their driving forces, 2005-2015," Energy Economics, Elsevier, vol. 91(C).
    15. Kumar, Indraneel & Tyner, Wallace E. & Sinha, Kumares C., 2016. "Input–output life cycle environmental assessment of greenhouse gas emissions from utility scale wind energy in the United States," Energy Policy, Elsevier, vol. 89(C), pages 294-301.
    16. Yannic Rehm & Lucas Chancel, 2022. "Measuring the Carbon Content of Wealth Evidence from France and Germany," PSE Working Papers halshs-03828939, HAL.
    17. Daniel Croner & Ivan Frankovic, 2018. "A Structural Decomposition Analysis of Global and NationalEnergy Intensity Trends," The Energy Journal, , vol. 39(2), pages 103-122, March.
    18. Stern, David I., 1997. "Limits to substitution and irreversibility in production and consumption: A neoclassical interpretation of ecological economics," Ecological Economics, Elsevier, vol. 21(3), pages 197-215, June.
    19. Minihan, Erin S. & Wu, Ziping, 2011. "The Potential Economic and Environmental Costs of GHG Mitigation Measures for Cattle Sectors in Northern Ireland," 85th Annual Conference, April 18-20, 2011, Warwick University, Coventry, UK 108779, Agricultural Economics Society.
    20. Bruckner, Martin & Giljum, Stefan & Fischer, Günther & Tramberend, Sylvia & Börner, Jan, "undated". "The global cropland footprint of the non-food bioeconomy," Discussion Papers 271062, University of Bonn, Center for Development Research (ZEF).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:22:p:15165-:d:973915. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.