IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i22p14868-d969151.html
   My bibliography  Save this article

Investigating the Relationship between Land Use/Land Cover Change and Land Surface Temperature Using Google Earth Engine; Case Study: Melbourne, Australia

Author

Listed:
  • Yashar Jamei

    (School of Engineering, Deakin University, Geelong, VIC 3216, Australia)

  • Mehdi Seyedmahmoudian

    (School of Software and Electrical Engineering, Swinburne University of Technology, Melbourne, VIC 3122, Australia)

  • Elmira Jamei

    (College of Engineering and Science, Victoria University, Melbourne, VIC 3011, Australia)

  • Ben Horan

    (School of Engineering, Deakin University, Geelong, VIC 3216, Australia)

  • Saad Mekhilef

    (School of Software and Electrical Engineering, Swinburne University of Technology, Melbourne, VIC 3122, Australia)

  • Alex Stojcevski

    (School of Software and Electrical Engineering, Swinburne University of Technology, Melbourne, VIC 3122, Australia)

Abstract

The rapid alteration to land cover, combined with climate change, results in the variation of the land surface temperature (LST). This LST variation is mainly affected by the spatiotemporal changes of land cover classes, their geospatial characteristics, and spectral indices. Melbourne has been the subject of previous studies of land cover change but often over short time periods without considering the trade-offs between land use/land cover (LULC) and mean daytimes summer season LST over a more extended period. To fill this gap, this research aims to investigate the role of LULC change on mean annual daytime LST in the hot summers of 2001 and 2018 in Melbourne. To achieve the study’s aim, LULC and LST maps were generated based on the cost-effective cloud-based geospatial analysis platform Google Earth Engine (GEE). Furthermore, the geospatial and geo-statistical relationship between LULC, LST, and spectral indices of LULC, including the Normalised Difference Built-up Index (NDBI) and the Normalised Difference Vegetation Index (NDVI), were identified. The findings showed that the mean daytime LST increased by 5.1 °C from 2001 to 2018. The minimum and maximum LST values were recorded for the vegetation and the built-up area classes for 2001 and 2018. Additionally, the mean daytime LST for vegetation and the built-up area classes increased by 5.5 °C and 5.9 °C from 2001 to 2018, respectively. Furthermore, both elevation and NDVI were revealed as the most influencing factors in the LULC classification process. Considering the R 2 values between LULC and LST and their NDVI values in 2018, grass (0.48), forest (0.27), and shrubs (0.21) had the highest values. In addition, urban areas (0.64), bare land (0.62), and cropland (0.61) LULC types showed the highest R 2 values between LST regarding their NDBI values. This study highlights why urban planners and policymakers must understand the impacts of LULC change on LST. Appropriate policy measures can be proposed based on the findings to control Melbourne’s future development.

Suggested Citation

  • Yashar Jamei & Mehdi Seyedmahmoudian & Elmira Jamei & Ben Horan & Saad Mekhilef & Alex Stojcevski, 2022. "Investigating the Relationship between Land Use/Land Cover Change and Land Surface Temperature Using Google Earth Engine; Case Study: Melbourne, Australia," Sustainability, MDPI, vol. 14(22), pages 1-34, November.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:22:p:14868-:d:969151
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/22/14868/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/22/14868/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lei Zhao & Xuhui Lee & Ronald B. Smith & Keith Oleson, 2014. "Strong contributions of local background climate to urban heat islands," Nature, Nature, vol. 511(7508), pages 216-219, July.
    2. Manjula Ranagalage & Ronald C. Estoque & Xinmin Zhang & Yuji Murayama, 2018. "Spatial Changes of Urban Heat Island Formation in the Colombo District, Sri Lanka: Implications for Sustainability Planning," Sustainability, MDPI, vol. 10(5), pages 1-21, April.
    3. Azad Rasul & Ramesh Ningthoujam, 2021. "Snow cover and vegetation greenness with leaf water content control the global land surface temperature," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(10), pages 14722-14748, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bing Li & Zhifeng Liu & Ying Nan & Shengnan Li & Yanmin Yang, 2018. "Comparative Analysis of Urban Heat Island Intensities in Chinese, Russian, and DPRK Regions across the Transnational Urban Agglomeration of the Tumen River in Northeast Asia," Sustainability, MDPI, vol. 10(8), pages 1-16, July.
    2. Giuseppina A. Giorgio & Maria Ragosta & Vito Telesca, 2017. "Climate Variability and Industrial-Suburban Heat Environment in a Mediterranean Area," Sustainability, MDPI, vol. 9(5), pages 1-10, May.
    3. David Hidalgo García & Julián Arco Díaz & Adelaida Martín Martín & Emilio Gómez Cobos, 2022. "Spatiotemporal Analysis of Urban Thermal Effects Caused by Heat Waves through Remote Sensing," Sustainability, MDPI, vol. 14(19), pages 1-24, September.
    4. Shaojing Jiang, 2023. "Compound Heat Vulnerability in the Record-Breaking Hot Summer of 2022 over the Yangtze River Delta Region," IJERPH, MDPI, vol. 20(8), pages 1-15, April.
    5. SangHyeok Lee & Donghyun Kim, 2022. "Multidisciplinary Understanding of the Urban Heating Problem and Mitigation: A Conceptual Framework for Urban Planning," IJERPH, MDPI, vol. 19(16), pages 1-15, August.
    6. Rituraj Neog & Shukla Acharjee & Jiten Hazarika, 2021. "Spatiotemporal analysis of road surface temperature (RST) and building wall temperature (BWT) and its relation to the traffic volume at Jorhat urban environment, India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(7), pages 10080-10092, July.
    7. Fei Huo & Li Xu & Yanping Li & James S. Famiglietti & Zhenhua Li & Yuya Kajikawa & Fei Chen, 2021. "Using big data analytics to synthesize research domains and identify emerging fields in urban climatology," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 12(1), January.
    8. Aerzuna Abulimiti & Yongqiang Liu & Lianmei Yang & Abuduwaili Abulikemu & Yusuyunjiang Mamitimin & Shuai Yuan & Reifat Enwer & Zhiyi Li & Abidan Abuduaini & Zulipina Kadier, 2024. "Urbanization Effect on Changes in Extreme Climate Events in Urumqi, China, from 1976 to 2018," Land, MDPI, vol. 13(3), pages 1-25, February.
    9. Mahshid Ghanbari & Mazdak Arabi & Matei Georgescu & Ashley M. Broadbent, 2023. "The role of climate change and urban development on compound dry-hot extremes across US cities," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    10. Zheng, Zhonghua & Zhao, Lei & Oleson, Keith W., 2020. "Large model parameter and structural uncertainties in global projections of urban heat waves," Earth Arxiv f5pwa, Center for Open Science.
    11. Ze Liang & Yueyao Wang & Jiao Huang & Feili Wei & Shuyao Wu & Jiashu Shen & Fuyue Sun & Shuangcheng Li, 2020. "Seasonal and Diurnal Variations in the Relationships between Urban Form and the Urban Heat Island Effect," Energies, MDPI, vol. 13(22), pages 1-19, November.
    12. Marie De Groeve & Eda Kale & Scott Allan Orr & Tim De Kock, 2023. "Preliminary Experimental Laboratory Methods to Analyse the Insulation Capacity of Vertical Greening on Temperature and Relative Humidity," Sustainability, MDPI, vol. 15(15), pages 1-13, July.
    13. Manjula Ranagalage & Ronald C. Estoque & Hepi H. Handayani & Xinmin Zhang & Takehiro Morimoto & Takeo Tadono & Yuji Murayama, 2018. "Relation between Urban Volume and Land Surface Temperature: A Comparative Study of Planned and Traditional Cities in Japan," Sustainability, MDPI, vol. 10(7), pages 1-17, July.
    14. Cristina Andrade & André Fonseca & João A. Santos, 2023. "Climate Change Trends for the Urban Heat Island Intensities in Two Major Portuguese Cities," Sustainability, MDPI, vol. 15(5), pages 1-20, February.
    15. DMSLB Dissanayake & Takehiro Morimoto & Yuji Murayama & Manjula Ranagalage, 2019. "Impact of Landscape Structure on the Variation of Land Surface Temperature in Sub-Saharan Region: A Case Study of Addis Ababa using Landsat Data (1986–2016)," Sustainability, MDPI, vol. 11(8), pages 1-18, April.
    16. Zi-Ce Ma & Peng Sun & Qiang Zhang & Yu-Qian Hu & Wei Jiang, 2021. "Characterization and Evaluation of MODIS-Derived Crop Water Stress Index (CWSI) for Monitoring Drought from 2001 to 2017 over Inner Mongolia," Sustainability, MDPI, vol. 13(2), pages 1-17, January.
    17. Emanuele Massaro & Rossano Schifanella & Matteo Piccardo & Luca Caporaso & Hannes Taubenböck & Alessandro Cescatti & Gregory Duveiller, 2023. "Spatially-optimized urban greening for reduction of population exposure to land surface temperature extremes," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    18. Lin Ma & Yueyao Wang & Ze Liang & Jiaqi Ding & Jiashu Shen & Feili Wei & Shuangcheng Li, 2021. "Changing Effect of Urban Form on the Seasonal and Diurnal Variations of Surface Urban Heat Island Intensities (SUHIIs) in More Than 3000 Cities in China," Sustainability, MDPI, vol. 13(5), pages 1-17, March.
    19. W. J. W. Botzen & M. L. Martinius & P. Bröde & M. A. Folkerts & P. Ignjacevic & F. Estrada & C. N. Harmsen & H. A. M. Daanen, 2020. "Economic valuation of climate change–induced mortality: age dependent cold and heat mortality in the Netherlands," Climatic Change, Springer, vol. 162(2), pages 545-562, September.
    20. Manjula Ranagalage & Yuji Murayama & DMSLB Dissanayake & Matamyo Simwanda, 2019. "The Impacts of Landscape Changes on Annual Mean Land Surface Temperature in the Tropical Mountain City of Sri Lanka: A Case Study of Nuwara Eliya (1996–2017)," Sustainability, MDPI, vol. 11(19), pages 1-26, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:22:p:14868-:d:969151. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.