IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i20p13204-d942270.html
   My bibliography  Save this article

The First 3D-Printed Building in Spain: A Study on Its Acoustic, Thermal and Environmental Performance

Author

Listed:
  • Andrea Salandin

    (Center for Physics Technologies (CTFAMA), Universitat Politècnica de València, 46022 València, Spain)

  • Alberto Quintana-Gallardo

    (Center for Physics Technologies (CTFAMA), Universitat Politècnica de València, 46022 València, Spain)

  • Vicente Gómez-Lozano

    (Center for Physics Technologies (CTFAMA), Universitat Politècnica de València, 46022 València, Spain)

  • Ignacio Guillén-Guillamón

    (Center for Physics Technologies (CTFAMA), Universitat Politècnica de València, 46022 València, Spain)

Abstract

The first 3D-printed building in Spain is the object of this study, and it is presented and physically described herein from different points of view. This study combines on-site measurements, simulations, and a life cycle assessment to assess some relevant parameters concerning the acoustic, thermal and environmental performance of the 3D-printed house. The main objectives are to analyze whether the house complies with the acoustic and thermal regulations and to assess whether it can act as a sustainable alternative to conventional masonry construction, especially when time plays an important role. The build surface (3D prototype) of the house is approximately 23 m 2 . The internal space includes a living room (12.35 m 2 ), a bedroom (7.36 m 2 ) and a bathroom (3.16 m 2 ). The total surface of the house is 22.87 m 2 and it has a volume of 64.03 m 3 . The acoustic insulation was measured according to the ISO 9869-1:2014 standard. In terms of the acoustic insulation, the sound reduction index was tested following the guidelines of the ISO 140-5:1999 standard. Additionally, the study includes a comparative life cycle assessment comparing the 3D-printed façade with two conventional wall typologies. The 3D-printed house displays an excellent thermal performance, with a measured thermal transmittance of 0.24 Wm −2 K −1 , suitable for all Spanish climate zones. Regarding the acoustic insulation, the measured global sound reduction indexes of the façades range from 36 to 45 dB, which is adequate for areas with noise levels of up to 75 dB. The environmental results indicate that 3D-printed façade manufacturing emits 30% more CO 2 e than a façade constructed using concrete blocks and 2% less than a masonry block wall. Overall, this study shows that, in addition to its multiple advantages in terms of the construction time, the studied 3D-printed house has similar acoustic, thermal and environmental traits to the most common construction typologies. However, it cannot be considered a sustainable construction method due to its high amount of cement.

Suggested Citation

  • Andrea Salandin & Alberto Quintana-Gallardo & Vicente Gómez-Lozano & Ignacio Guillén-Guillamón, 2022. "The First 3D-Printed Building in Spain: A Study on Its Acoustic, Thermal and Environmental Performance," Sustainability, MDPI, vol. 14(20), pages 1-20, October.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:20:p:13204-:d:942270
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/20/13204/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/20/13204/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kaiser Ahmed & Margaux Carlier & Christian Feldmann & Jarek Kurnitski, 2018. "A New Method for Contrasting Energy Performance and Near-Zero Energy Building Requirements in Different Climates and Countries," Energies, MDPI, vol. 11(6), pages 1-22, May.
    2. Mohammad Reza Khosravani & Azadeh Haghighi, 2022. "Large-Scale Automated Additive Construction: Overview, Robotic Solutions, Sustainability, and Future Prospect," Sustainability, MDPI, vol. 14(15), pages 1-30, August.
    3. Doo Sung Choi & Myeong Jin Ko, 2019. "Analysis of Convergence Characteristics of Average Method Regulated by ISO 9869-1 for Evaluating In Situ Thermal Resistance and Thermal Transmittance of Opaque Exterior Walls," Energies, MDPI, vol. 12(10), pages 1-18, May.
    4. Baglivo, Cristina & Congedo, Paolo Maria, 2015. "Design method of high performance precast external walls for warm climate by multi-objective optimization analysis," Energy, Elsevier, vol. 90(P2), pages 1645-1661.
    5. Chau, C.K. & Leung, T.M. & Ng, W.Y., 2015. "A review on Life Cycle Assessment, Life Cycle Energy Assessment and Life Cycle Carbon Emissions Assessment on buildings," Applied Energy, Elsevier, vol. 143(C), pages 395-413.
    6. David Bienvenido-Huertas & Roberto Rodríguez-Álvaro & Juan José Moyano & Fernando Rico & David Marín, 2018. "Determining the U -Value of Façades Using the Thermometric Method: Potentials and Limitations," Energies, MDPI, vol. 11(2), pages 1-17, February.
    7. Fernando R. Mazarrón & Jaime Cid-Falceto & Ignacio Cañas, 2012. "Ground Thermal Inertia for Energy Efficient Building Design: A Case Study on Food Industry," Energies, MDPI, vol. 5(2), pages 1-16, February.
    8. Jaime A. Mesa & Carlos Fúquene-Retamoso & Aníbal Maury-Ramírez, 2021. "Life Cycle Assessment on Construction and Demolition Waste: A Systematic Literature Review," Sustainability, MDPI, vol. 13(14), pages 1-22, July.
    9. Francesco Nocera & Rosa Caponetto & Giada Giuffrida & Maurizio Detommaso, 2020. "Energetic Retrofit Strategies for Traditional Sicilian Wine Cellars: A Case Study," Energies, MDPI, vol. 13(12), pages 1-17, June.
    10. Abdullah Alfaify & Mustafa Saleh & Fawaz M. Abdullah & Abdulrahman M. Al-Ahmari, 2020. "Design for Additive Manufacturing: A Systematic Review," Sustainability, MDPI, vol. 12(19), pages 1-22, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Martin, Miguel & Chong, Adrian & Biljecki, Filip & Miller, Clayton, 2022. "Infrared thermography in the built environment: A multi-scale review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    2. Aylin Ece Kayabekir & Zülal Akbay Arama & Gebrail Bekdaş & Sinan Melih Nigdeli & Zong Woo Geem, 2020. "Eco-Friendly Design of Reinforced Concrete Retaining Walls: Multi-objective Optimization with Harmony Search Applications," Sustainability, MDPI, vol. 12(15), pages 1-30, July.
    3. Burek, Jasmina & Nutter, Darin W., 2019. "A life cycle assessment-based multi-objective optimization of the purchased, solar, and wind energy for the grocery, perishables, and general merchandise multi-facility distribution center network," Applied Energy, Elsevier, vol. 235(C), pages 1427-1446.
    4. Huihui Shi & Qiang Chen, 2022. "Error-Tracking Iterative Learning Control for the Constrained Flexible-Joint Manipulator with Initial Errors," Sustainability, MDPI, vol. 14(19), pages 1-21, September.
    5. Sierra-Pérez, Jorge & Rodríguez-Soria, Beatriz & Boschmonart-Rives, Jesús & Gabarrell, Xavier, 2018. "Integrated life cycle assessment and thermodynamic simulation of a public building’s envelope renovation: Conventional vs. Passivhaus proposal," Applied Energy, Elsevier, vol. 212(C), pages 1510-1521.
    6. Yuanxin Liu & FengYun Li & Yi Wang & Xinhua Yu & Jiahai Yuan & Yuwei Wang, 2018. "Assessing the Environmental Impact Caused by Power Grid Projects in High Altitude Areas Based on BWM and Vague Sets Techniques," Sustainability, MDPI, vol. 10(6), pages 1-20, May.
    7. Patricia González-Vallejo & Radu Muntean & Jaime Solís-Guzmán & Madelyn Marrero, 2020. "Carbon Footprint of Dwelling Construction in Romania and Spain. A Comparative Analysis with the OERCO2 Tool," Sustainability, MDPI, vol. 12(17), pages 1-22, August.
    8. Antonello Monsù Scolaro & Stefania De Medici, 2021. "Downcycling and Upcycling in Rehabilitation and Adaptive Reuse of Pre-Existing Buildings: Re-Designing Technological Performances in an Environmental Perspective," Energies, MDPI, vol. 14(21), pages 1-23, October.
    9. Nuri Cihan Kayaçetin & Chiara Piccardo & Alexis Versele, 2022. "Social Impact Assessment of Circular Construction: Case of Living Lab Ghent," Sustainability, MDPI, vol. 15(1), pages 1-15, December.
    10. Hanli Chen & Chunmei Lu, 2023. "Research on the Spatial Effect and Threshold Characteristics of New-Type Urbanization on Carbon Emissions in China’s Construction Industry," Sustainability, MDPI, vol. 15(22), pages 1-26, November.
    11. Yannick Lessard & Chirjiv Anand & Pierre Blanchet & Caroline Frenette & Ben Amor, 2018. "LEED v4: Where Are We Now? Critical Assessment through the LCA of an Office Building Using a Low Impact Energy Consumption Mix," Journal of Industrial Ecology, Yale University, vol. 22(5), pages 1105-1116, October.
    12. Cristina Baglivo & Paolo Maria Congedo & Matteo Di Cataldo & Luigi Damiano Coluccia & Delia D’Agostino, 2017. "Envelope Design Optimization by Thermal Modelling of a Building in a Warm Climate," Energies, MDPI, vol. 10(11), pages 1-34, November.
    13. Ana Ferreira & Manuel Duarte Pinheiro & Jorge de Brito & Ricardo Mateus, 2022. "Embodied vs. Operational Energy and Carbon in Retail Building Shells: A Case Study in Portugal," Energies, MDPI, vol. 16(1), pages 1-23, December.
    14. Anna M. Grabiec & Jeonghyun Kim & Andrzej Ubysz & Pilar Bilbao, 2021. "Some Remarks towards a Better Understanding of the Use of Concrete Recycled Aggregate: A Review," Sustainability, MDPI, vol. 13(23), pages 1-19, December.
    15. Ariadna Carrobé & Lídia Rincón & Ingrid Martorell, 2021. "Thermal Monitoring and Simulation of Earthen Buildings. A Review," Energies, MDPI, vol. 14(8), pages 1-47, April.
    16. Krzysztof Wąs & Jan Radoń & Agnieszka Sadłowska-Sałęga, 2020. "Maintenance of Passive House Standard in the Light of Long-Term Study on Energy Use in a Prefabricated Lightweight Passive House in Central Europe," Energies, MDPI, vol. 13(11), pages 1-22, June.
    17. Bienvenido-Huertas, David & Moyano, Juan & Rodríguez-Jiménez, Carlos E. & Marín, David, 2019. "Applying an artificial neural network to assess thermal transmittance in walls by means of the thermometric method," Applied Energy, Elsevier, vol. 233, pages 1-14.
    18. Mastrucci, Alessio & Marvuglia, Antonino & Leopold, Ulrich & Benetto, Enrico, 2017. "Life Cycle Assessment of building stocks from urban to transnational scales: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 316-332.
    19. Alejandro Cabeza-Prieto & María Soledad Camino-Olea & María Ascensión Rodríguez-Esteban & Alfredo Llorente-Álvarez & María Paz Sáez Pérez, 2020. "Moisture Influence on the Thermal Operation of the Late 19th Century Brick Facade, in a Historic Building in the City of Zamora," Energies, MDPI, vol. 13(6), pages 1-14, March.
    20. Andrea Alongi & Luca Sala & Adriana Angelotti & Livio Mazzarella, 2023. "In Situ Measurement of Wall Thermal Properties: Parametric Investigation of the Heat Flow Meter Methods through Virtual Experiments Data," Energies, MDPI, vol. 16(10), pages 1-21, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:20:p:13204-:d:942270. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.