IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i2p360-d130130.html
   My bibliography  Save this article

Determining the U -Value of Façades Using the Thermometric Method: Potentials and Limitations

Author

Listed:
  • David Bienvenido-Huertas

    (Department of Graphical Expression and Building Engineering, University of Seville, 41012 Seville, Spain)

  • Roberto Rodríguez-Álvaro

    (Department of Civil Engineering, Universidade da Coruña, 15071 A Coruña, Spain)

  • Juan José Moyano

    (Department of Graphical Expression and Building Engineering, University of Seville, 41012 Seville, Spain)

  • Fernando Rico

    (Department of Graphical Expression and Building Engineering, University of Seville, 41012 Seville, Spain)

  • David Marín

    (Department of Graphical Expression and Building Engineering, University of Seville, 41012 Seville, Spain)

Abstract

The thermal transmittance of building envelopes determines to a large extent the energy demand of buildings. Thus, there is a keen interest in having methods which can precisely evaluate thermal transmittance. From a scientific point of view, this study analyses the viability of the application of the thermometric method (THM), one of the most used methods in Spain. For this purpose, the test method has been improved by determining the adequate test conditions, the selection and installation of equipment, data acquisition and post-processing, and the estimation of uncertainty. We analyse eight case studies in a Mediterranean climate (Csa) to determine the potentials and limitations of the method. The results show that the values obtained through THM are valid under winter environmental conditions with relative uncertainties between 6% and 13%, while difficulties to perform the test in optimal conditions, and therefore to obtain valid results in warmer seasons, are detected. In this regard, the case studies which obtained a greater number of observations by performing the filtrate conditions were able to obtain representative results. Furthermore, there are significant differences depending on the kind of equipment and probes used during the experimental campaign. Finally, in warm climate regions a data filtrate can be considered for observations of a temperature difference higher than 5 °C, obtaining valid results for the case studies, although the rise in the thermal gradient can guarantee a greater stability of data.

Suggested Citation

  • David Bienvenido-Huertas & Roberto Rodríguez-Álvaro & Juan José Moyano & Fernando Rico & David Marín, 2018. "Determining the U -Value of Façades Using the Thermometric Method: Potentials and Limitations," Energies, MDPI, vol. 11(2), pages 1-17, February.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:2:p:360-:d:130130
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/2/360/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/2/360/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Giuliano Dall'O' & Luca Sarto & Angela Panza, 2013. "Infrared Screening of Residential Buildings for Energy Audit Purposes: Results of a Field Test," Energies, MDPI, vol. 6(8), pages 1-20, July.
    2. Gabriele Battista & Luca Evangelisti & Claudia Guattari & Carmine Basilicata & Roberto De Lieto Vollaro, 2014. "Buildings Energy Efficiency: Interventions Analysis under a Smart Cities Approach," Sustainability, MDPI, vol. 6(8), pages 1-12, July.
    3. Fokaides, Paris A. & Kalogirou, Soteris A., 2011. "Application of infrared thermography for the determination of the overall heat transfer coefficient (U-Value) in building envelopes," Applied Energy, Elsevier, vol. 88(12), pages 4358-4365.
    4. Kwon Sook Park & Mi Jeong Kim, 2017. "Energy Demand Reduction in the Residential Building Sector: A Case Study of Korea," Energies, MDPI, vol. 10(10), pages 1-11, September.
    5. Luca Evangelisti & Claudia Guattari & Paola Gori & Roberto De Lieto Vollaro, 2015. "In Situ Thermal Transmittance Measurements for Investigating Differences between Wall Models and Actual Building Performance," Sustainability, MDPI, vol. 7(8), pages 1-11, August.
    6. Doo Sung Choi & Myeong Jin Ko, 2017. "Comparison of Various Analysis Methods Based on Heat Flowmeters and Infrared Thermography Measurements for the Evaluation of the In Situ Thermal Transmittance of Opaque Exterior Walls," Energies, MDPI, vol. 10(7), pages 1-22, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrea Salandin & Alberto Quintana-Gallardo & Vicente Gómez-Lozano & Ignacio Guillén-Guillamón, 2022. "The First 3D-Printed Building in Spain: A Study on Its Acoustic, Thermal and Environmental Performance," Sustainability, MDPI, vol. 14(20), pages 1-20, October.
    2. Yutong Li & Atsushi Teramoto & Takaaki Ohkubo & Akihiro Sugiyama, 2022. "Estimation of Indoor Temperature Increments in Summers Using Heat-Flow Sensors to Assess the Impact of Roof Slab Insulation Methods," Sustainability, MDPI, vol. 14(22), pages 1-23, November.
    3. Bienvenido-Huertas, David & Moyano, Juan & Rodríguez-Jiménez, Carlos E. & Marín, David, 2019. "Applying an artificial neural network to assess thermal transmittance in walls by means of the thermometric method," Applied Energy, Elsevier, vol. 233, pages 1-14.
    4. Martin, Miguel & Chong, Adrian & Biljecki, Filip & Miller, Clayton, 2022. "Infrared thermography in the built environment: A multi-scale review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    5. Bienvenido-Huertas, David & Moyano, Juan & Marín, David & Fresco-Contreras, Rafael, 2019. "Review of in situ methods for assessing the thermal transmittance of walls," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 356-371.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bienvenido-Huertas, David & Moyano, Juan & Marín, David & Fresco-Contreras, Rafael, 2019. "Review of in situ methods for assessing the thermal transmittance of walls," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 356-371.
    2. Doo Sung Choi & Myeong Jin Ko, 2017. "Comparison of Various Analysis Methods Based on Heat Flowmeters and Infrared Thermography Measurements for the Evaluation of the In Situ Thermal Transmittance of Opaque Exterior Walls," Energies, MDPI, vol. 10(7), pages 1-22, July.
    3. Bienvenido-Huertas, David & Moyano, Juan & Rodríguez-Jiménez, Carlos E. & Marín, David, 2019. "Applying an artificial neural network to assess thermal transmittance in walls by means of the thermometric method," Applied Energy, Elsevier, vol. 233, pages 1-14.
    4. Martin, Miguel & Chong, Adrian & Biljecki, Filip & Miller, Clayton, 2022. "Infrared thermography in the built environment: A multi-scale review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    5. Doo Sung Choi & Myeong Jin Ko, 2019. "Analysis of Convergence Characteristics of Average Method Regulated by ISO 9869-1 for Evaluating In Situ Thermal Resistance and Thermal Transmittance of Opaque Exterior Walls," Energies, MDPI, vol. 12(10), pages 1-18, May.
    6. Blanca Tejedor & Eva Barreira & Vasco Peixoto de Freitas & Tomasz Kisilewicz & Katarzyna Nowak-Dzieszko & Umberto Berardi, 2020. "Impact of Stationary and Dynamic Conditions on the U-Value Measurements of Heavy-Multi Leaf Walls by Quantitative IRT," Energies, MDPI, vol. 13(24), pages 1-19, December.
    7. David Bienvenido-Huertas & Juan Antonio Fernández Quiñones & Juan Moyano & Carlos E. Rodríguez-Jiménez, 2018. "Patents Analysis of Thermal Bridges in Slab Fronts and Their Effect on Energy Demand," Energies, MDPI, vol. 11(9), pages 1-18, August.
    8. Doo-Sung Choi & Ye-Ji Lee & Ji-Hoon Moon & Yong-Shik Kim & Myeong-Jin Ko, 2023. "Estimating In-Situ R-Value of Highly Insulated Building Walls Based on the Measurement of Temperature and Heat Flux Inside the Wall," Energies, MDPI, vol. 16(15), pages 1-16, July.
    9. David Bienvenido-Huertas, 2020. "Assessing the Environmental Impact of Thermal Transmittance Tests Performed in Façades of Existing Buildings: The Case of Spain," Sustainability, MDPI, vol. 12(15), pages 1-18, August.
    10. Albatici, Rossano & Tonelli, Arnaldo M. & Chiogna, Michela, 2015. "A comprehensive experimental approach for the validation of quantitative infrared thermography in the evaluation of building thermal transmittance," Applied Energy, Elsevier, vol. 141(C), pages 218-228.
    11. Marianna Rotilio & Federica Cucchiella & Pierluigi De Berardinis & Vincenzo Stornelli, 2018. "Thermal Transmittance Measurements of the Historical Masonries: Some Case Studies," Energies, MDPI, vol. 11(11), pages 1-18, November.
    12. Lucchi, Elena, 2018. "Applications of the infrared thermography in the energy audit of buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3077-3090.
    13. Cristina Cornaro & Gianluigi Bovesecchi & Filippo Calcerano & Letizia Martinelli & Elena Gigliarelli, 2023. "An HBIM Integrated Approach Using Non-Destructive Techniques (NDT) to Support Energy and Environmental Improvement of Built Heritage: The Case Study of Palazzo Maffei Borghese in Rome," Sustainability, MDPI, vol. 15(14), pages 1-36, July.
    14. Seyoung Park & Seo Hoon Kim & Hakgeun Jeong & Sung Lok Do & Jonghun Kim, 2021. "In Situ Evaluation of the U-Value of a Window Using the Infrared Method," Energies, MDPI, vol. 14(7), pages 1-14, March.
    15. Iole Nardi & Elena Lucchi, 2023. "In Situ Thermal Transmittance Assessment of the Building Envelope: Practical Advice and Outlooks for Standard and Innovative Procedures," Energies, MDPI, vol. 16(8), pages 1-31, April.
    16. Kylili, Angeliki & Fokaides, Paris A. & Christou, Petros & Kalogirou, Soteris A., 2014. "Infrared thermography (IRT) applications for building diagnostics: A review," Applied Energy, Elsevier, vol. 134(C), pages 531-549.
    17. Fokaides, Paris A. & Jurelionis, Andrius & Gagyte, Laura & Kalogirou, Soteris A., 2016. "Mock target IR thermography for indoor air temperature measurement," Applied Energy, Elsevier, vol. 164(C), pages 676-685.
    18. Cinzia Buratti & Francesco Asdrubali & Domenico Palladino & Antonella Rotili, 2015. "Energy Performance Database of Building Heritage in the Region of Umbria, Central Italy," Energies, MDPI, vol. 8(7), pages 1-18, July.
    19. Hou, Yanliang & Long, Ruyin & Zhang, Linling & Wu, Meifen, 2020. "Dynamic analysis of the sustainable development capability of coal cities," Resources Policy, Elsevier, vol. 66(C).
    20. Rasooli, Arash & Itard, Laure, 2019. "In-situ rapid determination of walls’ thermal conductivity, volumetric heat capacity, and thermal resistance, using response factors," Applied Energy, Elsevier, vol. 253(C), pages 1-1.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:2:p:360-:d:130130. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.