IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v88y2011i12p4358-4365.html
   My bibliography  Save this article

Application of infrared thermography for the determination of the overall heat transfer coefficient (U-Value) in building envelopes

Author

Listed:
  • Fokaides, Paris A.
  • Kalogirou, Soteris A.

Abstract

Infrared (IR) thermography constitutes a reliable measurement method for the determination of spatially resolved surface temperature distributions. IR thermography may be used for several research problems, applications, and measurement environments with a variety of physical arrangements. In this work the results of the determination of the overall heat transfer coefficient (U-Value) with the use of IR thermography for building envelopes are presented. The obtained U-Values are validated by means of measurements performed with the use of a thermohygrometer for two seasons (summer and winter), as well as with the notional results provided by the relevant EN standard. Issues related to the applicability of the method due to the non-steady heat transfer phenomena observed at building shells are also discussed. A more precise validation of the proposed technique was also performed with the use of heat flux meters. The percentage absolute deviation between the notional and the measured U-Values for IR thermography is found to be in an acceptable level, in the range of 10–20%. Finally, a sensitivity analysis is conducted in order to define the most important parameters which may have a significant influence on the measurement accuracy.

Suggested Citation

  • Fokaides, Paris A. & Kalogirou, Soteris A., 2011. "Application of infrared thermography for the determination of the overall heat transfer coefficient (U-Value) in building envelopes," Applied Energy, Elsevier, vol. 88(12), pages 4358-4365.
  • Handle: RePEc:eee:appene:v:88:y:2011:i:12:p:4358-4365
    DOI: 10.1016/j.apenergy.2011.05.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261911003059
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2011.05.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:88:y:2011:i:12:p:4358-4365. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.