IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i14p4984-d858011.html
   My bibliography  Save this article

Adaptation of Users to Future Climate Conditions in Naturally Ventilated Historic Buildings: Effects on Indoor Comfort

Author

Listed:
  • Francesco Fiorito

    (Department of Civil, Environmental, Land, Building Engineering and Chemistry (DICATECh), Polytechnic University of Bari, 70126 Bari, Italy)

  • Giandomenico Vurro

    (The Cyprus Institute, Nicosia 1065, Cyprus)

  • Francesco Carlucci

    (Department of Civil, Environmental, Land, Building Engineering and Chemistry (DICATECh), Polytechnic University of Bari, 70126 Bari, Italy)

  • Ludovica Maria Campagna

    (Department of Civil, Environmental, Land, Building Engineering and Chemistry (DICATECh), Polytechnic University of Bari, 70126 Bari, Italy)

  • Mariella De Fino

    (Department of Civil, Environmental, Land, Building Engineering and Chemistry (DICATECh), Polytechnic University of Bari, 70126 Bari, Italy)

  • Salvatore Carlucci

    (The Cyprus Institute, Nicosia 1065, Cyprus)

  • Fabio Fatiguso

    (Department of Civil, Environmental, Land, Building Engineering and Chemistry (DICATECh), Polytechnic University of Bari, 70126 Bari, Italy)

Abstract

User behaviour can significantly affect indoor thermal comfort conditions, as well as energy consumption, especially in existing buildings with high thermal masses where natural cross ventilation is the main strategy to reduce cooling loads. The aims of this paper were: (i) to compare how behavioural changes evaluated by means of rule-based and stochastic models lead to changes in indoor thermal comfort levels, and (ii) to define the patterns of indoor thermal comfort in historic residential buildings in future scenarios. To this end, a historic building located in Molfetta (Southern Italy) was analysed using a dynamic energy simulation engine in five weather scenarios (Typical Meteorological Year, current extreme weather file 2018, predicted weather files for 2020, 2050, and 2080 generated by morphing method), and stochastic and rule-based models for window openings were adopted and compared. The results showed that the stochastic model was more accurate than the rule-based one, resulting in a reduction of discomfort conditions during the summer period between 30% and 50% in all climate scenarios. However, although the differences between predicted discomfort levels using rule-based and stochastic models tended to increase, discomfort levels still appeared to be not acceptable in the 2050 and 2080 scenarios due to the rising temperature driven by climate change.

Suggested Citation

  • Francesco Fiorito & Giandomenico Vurro & Francesco Carlucci & Ludovica Maria Campagna & Mariella De Fino & Salvatore Carlucci & Fabio Fatiguso, 2022. "Adaptation of Users to Future Climate Conditions in Naturally Ventilated Historic Buildings: Effects on Indoor Comfort," Energies, MDPI, vol. 15(14), pages 1-21, July.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:14:p:4984-:d:858011
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/14/4984/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/14/4984/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jentsch, Mark F. & James, Patrick A.B. & Bourikas, Leonidas & Bahaj, AbuBakr S., 2013. "Transforming existing weather data for worldwide locations to enable energy and building performance simulation under future climates," Renewable Energy, Elsevier, vol. 55(C), pages 514-524.
    2. Rocío Escandón & Rafael Suárez & Juan José Sendra & Fabrizio Ascione & Nicola Bianco & Gerardo Maria Mauro, 2019. "Predicting the Impact of Climate Change on Thermal Comfort in A Building Category: The Case of Linear-type Social Housing Stock in Southern Spain," Energies, MDPI, vol. 12(12), pages 1-21, June.
    3. Rodrigues, Eugénio & Fernandes, Marco S., 2020. "Overheating risk in Mediterranean residential buildings: Comparison of current and future climate scenarios," Applied Energy, Elsevier, vol. 259(C).
    4. Doo Sung Choi & Myeong Jin Ko, 2019. "Analysis of Convergence Characteristics of Average Method Regulated by ISO 9869-1 for Evaluating In Situ Thermal Resistance and Thermal Transmittance of Opaque Exterior Walls," Energies, MDPI, vol. 12(10), pages 1-18, May.
    5. Lingjun Hao & Daniel Herrera-Avellanosa & Claudio Del Pero & Alexandra Troi, 2020. "What Are the Implications of Climate Change for Retrofitted Historic Buildings? A Literature Review," Sustainability, MDPI, vol. 12(18), pages 1-17, September.
    6. Lei Tang & Zhengtao Ai & Chunyan Song & Guoqiang Zhang & Zhengxuan Liu, 2021. "A Strategy to Maximally Utilize Outdoor Air for Indoor Thermal Environment," Energies, MDPI, vol. 14(13), pages 1-13, July.
    7. Moazami, Amin & Nik, Vahid M. & Carlucci, Salvatore & Geving, Stig, 2019. "Impacts of future weather data typology on building energy performance – Investigating long-term patterns of climate change and extreme weather conditions," Applied Energy, Elsevier, vol. 238(C), pages 696-720.
    8. Peacock, A.D. & Jenkins, D.P. & Kane, D., 2010. "Investigating the potential of overheating in UK dwellings as a consequence of extant climate change," Energy Policy, Elsevier, vol. 38(7), pages 3277-3288, July.
    9. Nik, Vahid M., 2016. "Making energy simulation easier for future climate – Synthesizing typical and extreme weather data sets out of regional climate models (RCMs)," Applied Energy, Elsevier, vol. 177(C), pages 204-226.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Yuchen & Javanroodi, Kavan & Nik, Vahid M., 2021. "Climate change and energy performance of European residential building stocks – A comprehensive impact assessment using climate big data from the coordinated regional climate downscaling experiment," Applied Energy, Elsevier, vol. 298(C).
    2. Hamed Yassaghi & Simi Hoque, 2021. "Impact Assessment in the Process of Propagating Climate Change Uncertainties into Building Energy Use," Energies, MDPI, vol. 14(2), pages 1-27, January.
    3. De Masi, Rosa Francesca & Gigante, Antonio & Ruggiero, Silvia & Vanoli, Giuseppe Peter, 2021. "Impact of weather data and climate change projections in the refurbishment design of residential buildings in cooling dominated climate," Applied Energy, Elsevier, vol. 303(C).
    4. Abhishek Gaur & Michael Lacasse, 2022. "Climate Data to Support the Adaptation of Buildings to Climate Change in Canada," Data, MDPI, vol. 7(4), pages 1-22, April.
    5. Mauree, Dasaraden & Naboni, Emanuele & Coccolo, Silvia & Perera, A.T.D. & Nik, Vahid M. & Scartezzini, Jean-Louis, 2019. "A review of assessment methods for the urban environment and its energy sustainability to guarantee climate adaptation of future cities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 733-746.
    6. S. Soutullo & E. Giancola & M. J. Jiménez & J. A. Ferrer & M. N. Sánchez, 2020. "How Climate Trends Impact on the Thermal Performance of a Typical Residential Building in Madrid," Energies, MDPI, vol. 13(1), pages 1-21, January.
    7. Rodrigues, Eugénio & Fernandes, Marco S., 2020. "Overheating risk in Mediterranean residential buildings: Comparison of current and future climate scenarios," Applied Energy, Elsevier, vol. 259(C).
    8. Anaïs Machard & Christian Inard & Jean-Marie Alessandrini & Charles Pelé & Jacques Ribéron, 2020. "A Methodology for Assembling Future Weather Files Including Heatwaves for Building Thermal Simulations from the European Coordinated Regional Downscaling Experiment (EURO-CORDEX) Climate Data," Energies, MDPI, vol. 13(13), pages 1-36, July.
    9. Bell, N.O. & Bilbao, J.I. & Kay, M. & Sproul, A.B., 2022. "Future climate scenarios and their impact on heating, ventilation and air-conditioning system design and performance for commercial buildings for 2050," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    10. Moazami, Amin & Nik, Vahid M. & Carlucci, Salvatore & Geving, Stig, 2019. "Impacts of future weather data typology on building energy performance – Investigating long-term patterns of climate change and extreme weather conditions," Applied Energy, Elsevier, vol. 238(C), pages 696-720.
    11. Pajek, Luka & Košir, Mitja, 2021. "Strategy for achieving long-term energy efficiency of European single-family buildings through passive climate adaptation," Applied Energy, Elsevier, vol. 297(C).
    12. Baglivo, Cristina & Congedo, Paolo Maria & Murrone, Graziano & Lezzi, Dalila, 2022. "Long-term predictive energy analysis of a high-performance building in a mediterranean climate under climate change," Energy, Elsevier, vol. 238(PA).
    13. Dasaraden Mauree & Silvia Coccolo & Amarasinghage Tharindu Dasun Perera & Vahid Nik & Jean-Louis Scartezzini & Emanuele Naboni, 2018. "A New Framework to Evaluate Urban Design Using Urban Microclimatic Modeling in Future Climatic Conditions," Sustainability, MDPI, vol. 10(4), pages 1-20, April.
    14. Yassaghi, Hamed & Gurian, Patrick L. & Hoque, Simi, 2020. "Propagating downscaled future weather file uncertainties into building energy use," Applied Energy, Elsevier, vol. 278(C).
    15. Hassan Bazazzadeh & Peiman Pilechiha & Adam Nadolny & Mohammadjavad Mahdavinejad & Seyedeh sara Hashemi safaei, 2021. "The Impact Assessment of Climate Change on Building Energy Consumption in Poland," Energies, MDPI, vol. 14(14), pages 1-17, July.
    16. Lingjun Hao & Daniel Herrera-Avellanosa & Claudio Del Pero & Alexandra Troi, 2020. "What Are the Implications of Climate Change for Retrofitted Historic Buildings? A Literature Review," Sustainability, MDPI, vol. 12(18), pages 1-17, September.
    17. Nik, Vahid M. & Moazami, Amin, 2021. "Using collective intelligence to enhance demand flexibility and climate resilience in urban areas," Applied Energy, Elsevier, vol. 281(C).
    18. Perera, A.T.D. & Javanroodi, Kavan & Nik, Vahid M., 2021. "Climate resilient interconnected infrastructure: Co-optimization of energy systems and urban morphology," Applied Energy, Elsevier, vol. 285(C).
    19. Lucía Pereira-Ruchansky & Alexis Pérez-Fargallo, 2020. "Integrated Analysis of Energy Saving and Thermal Comfort of Retrofits in Social Housing under Climate Change Influence in Uruguay," Sustainability, MDPI, vol. 12(11), pages 1-22, June.
    20. Berardi, Umberto & Jafarpur, Pouriya, 2020. "Assessing the impact of climate change on building heating and cooling energy demand in Canada," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:14:p:4984-:d:858011. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.