IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i19p12753-d935203.html
   My bibliography  Save this article

Impact of Different Fertilizer Forms on Yield Components and Macro–Micronutrient Contents of Cowpea ( Vigna unguiculata L.)

Author

Listed:
  • Cengiz Yürürdurmaz

    (Department of Field Crops, Faculty of Agriculture, Kahramanmaraş Sütçü İmam University, Kahramanmaraş 46000, Türkiye)

Abstract

Organic materials, whose importance is increasing day by day in terms of soil fertility, plant nutrition, and sustainable agriculture in the world, need to be shown to be more effective against chemical fertilizers in order for farmers to adopt and use them more. The study was carried out to determine the effects of different organic fertilizer forms (farmyard manure (FM1 = 2500, FM2 = 5,104,000, FM3 = 7500, and FM4 = 10,000 kg ha −1 ), leonardite (L1 = 5000 and L2 = 10,000 kg ha −1 ) and vermicompost (V1 = 2500, V2 = 5000, V3 = 7500, and V4 = 10,000 kg ha −1 )) on the yield components and some macro and micronutrient contents of the cowpea ( Vigna unguiculata L.). The study, which was carried out under the Kahramanmaraş Mediterranean ecological conditions in 2020–2021, was conducted according to the experimental design of completely randomized blocks with three replications. As a result of the study, it was found that the differences between the fertilizer forms were significantly effective in terms of all the examined characteristics. It was determined that the seed yields varied between 3043.3–4126.7 kg ha −1 , and according to the results of the two-year study, 10,000 kg ha −1 vermicompost would be sufficient to obtain the highest cowpea yield (4126.7 kg ha −1 ) under Mediterranean climate conditions.

Suggested Citation

  • Cengiz Yürürdurmaz, 2022. "Impact of Different Fertilizer Forms on Yield Components and Macro–Micronutrient Contents of Cowpea ( Vigna unguiculata L.)," Sustainability, MDPI, vol. 14(19), pages 1-14, October.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:19:p:12753-:d:935203
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/19/12753/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/19/12753/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xuejun Liu & Ying Zhang & Wenxuan Han & Aohan Tang & Jianlin Shen & Zhenling Cui & Peter Vitousek & Jan Willem Erisman & Keith Goulding & Peter Christie & Andreas Fangmeier & Fusuo Zhang, 2013. "Enhanced nitrogen deposition over China," Nature, Nature, vol. 494(7438), pages 459-462, February.
    2. Priyanka Chandra & Subhash Chander Gill & Kailash Prajapat & Arijit Barman & Rajender Singh Chhokar & Subhash Chandra Tripathi & Geeta Singh & Raj Kumar & Arvind Kumar Rai & Rinki Khobra & Poonam Jasr, 2022. "Response of Wheat Cultivars to Organic and Inorganic Nutrition: Effect on the Yield and Soil Biological Properties," Sustainability, MDPI, vol. 14(15), pages 1-20, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhongen Niu & Huimin Yan & Fang Liu, 2020. "Decreasing Cropping Intensity Dominated the Negative Trend of Cropland Productivity in Southern China in 2000–2015," Sustainability, MDPI, vol. 12(23), pages 1-14, December.
    2. Syed Ayyaz Javed & Muhammad Saleem Arif & Sher Muhammad Shahzad & Muhammad Ashraf & Rizwana Kausar & Taimoor Hassan Farooq & M. Iftikhar Hussain & Awais Shakoor, 2021. "Can Different Salt Formulations Revert the Depressing Effect of Salinity on Maize by Modulating Plant Biochemical Attributes and Activating Stress Regulators through Improved N Supply?," Sustainability, MDPI, vol. 13(14), pages 1-16, July.
    3. Ke Xu & Chunmei Wang & Xintong Yang, 2017. "Five-year study of the effects of simulated nitrogen deposition levels and forms on soil nitrous oxide emissions from a temperate forest in northern China," PLOS ONE, Public Library of Science, vol. 12(12), pages 1-18, December.
    4. Zhihua Liu & John S. Kimball & Ashley P. Ballantyne & Nicholas C. Parazoo & Wen J. Wang & Ana Bastos & Nima Madani & Susan M. Natali & Jennifer D. Watts & Brendan M. Rogers & Philippe Ciais & Kailiang, 2022. "Respiratory loss during late-growing season determines the net carbon dioxide sink in northern permafrost regions," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    5. Huang, Suo & Bartlett, Paul & Arain, M. Altaf, 2016. "An analysis of global terrestrial carbon, water and energy dynamics using the carbon–nitrogen coupled CLASS-CTEMN+ model," Ecological Modelling, Elsevier, vol. 336(C), pages 36-56.
    6. Mirhaj, M. & Razzak, M.A. & Wahab, M.A., 2014. "Comparison of nitrogen balances and efficiencies in rice cum prawn vs. rice cum fish cultures in Mymensingh, North-Eastern Bangladesh," Agricultural Systems, Elsevier, vol. 125(C), pages 54-62.
    7. Francisco J. Areal & Wantao Yu & Kevin Tansey & Jiahuan Liu, 2022. "Measuring Sustainable Intensification Using Satellite Remote Sensing Data," Sustainability, MDPI, vol. 14(3), pages 1-13, February.
    8. Wang, Xiaolong & Chen, Yuanquan & Sui, Peng & Yan, Peng & Yang, Xiaolei & Gao, Wangsheng, 2017. "Preliminary analysis on economic and environmental consequences of grain production on different farm sizes in North China Plain," Agricultural Systems, Elsevier, vol. 153(C), pages 181-189.
    9. Longyu Shi & Miao Zhang & Yajing Zhang & Bin Yang & Huaping Sun & Tong Xu, 2018. "Comprehensive Analysis of Nitrogen Deposition in Urban Ecosystem: A Case Study of Xiamen City, China," Sustainability, MDPI, vol. 10(12), pages 1-20, December.
    10. Baozhi Li & Bin Guo & Qibiao Zhu & Ni Zhuo, 2023. "Impact of Technical Training and Personalized Information Support on Farmers’ Fertilization Behavior: Evidence from China," Sustainability, MDPI, vol. 15(11), pages 1-11, June.
    11. Tianjie Lei & Jianjun Wu & Jiabao Wang & Changliang Shao & Weiwei Wang & Dongpan Chen & Xiangyu Li, 2022. "The Net Influence of Drought on Grassland Productivity over the Past 50 Years," Sustainability, MDPI, vol. 14(19), pages 1-20, September.
    12. Zehui Liu & Harald E. Rieder & Christian Schmidt & Monika Mayer & Yixin Guo & Wilfried Winiwarter & Lin Zhang, 2023. "Optimal reactive nitrogen control pathways identified for cost-effective PM2.5 mitigation in Europe," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    13. Yang Shen & Xiaoyang Guo & Xiuwu Zhang, 2023. "Digital Financial Inclusion, Land Transfer, and Agricultural Green Total Factor Productivity," Sustainability, MDPI, vol. 15(8), pages 1-25, April.
    14. Jing Zhang & Xiaoan Zuo & Peng Lv, 2023. "Effects of Grazing, Extreme Drought, Extreme Rainfall and Nitrogen Addition on Vegetation Characteristics and Productivity of Semiarid Grassland," IJERPH, MDPI, vol. 20(2), pages 1-19, January.
    15. Yin, Huajun & Zhao, Wenqiang & Li, Ting & Cheng, Xinying & Liu, Qing, 2018. "Balancing straw returning and chemical fertilizers in China: Role of straw nutrient resources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2695-2702.
    16. Wang, Zhen & Zhang, Xiuying & Liu, Lei & Wang, Shanqian & Zhao, Limin & Wu, Xiaodi & Zhang, Wuting & Huang, Xianjin, 2020. "Inhibition of methane emissions from Chinese rice fields by nitrogen deposition based on the DNDC model," Agricultural Systems, Elsevier, vol. 184(C).
    17. Weishou Shen & Yaou Long & Zijian Qiu & Nan Gao & Yoko Masuda & Hideomi Itoh & Hirotomo Ohba & Yutaka Shiratori & Adharsh Rajasekar & Keishi Senoo, 2022. "Investigation of Rice Yields and Critical N Losses from Paddy Soil under Different N Fertilization Rates with Iron Application," IJERPH, MDPI, vol. 19(14), pages 1-16, July.
    18. Rajeev Kumar Gupta & Arun Shankar & Bijay-Singh & Rajan Bhatt & Asma A. Al-Huqail & Manzer H. Siddiqui & Ritesh Kumar, 2022. "Precision Nitrogen Management in Bt Cotton ( Gossypium hirsutum ) Improves Seed Cotton Yield and Nitrogen Use Efficiency, and Reduces Nitrous Oxide Emissions," Sustainability, MDPI, vol. 14(4), pages 1-13, February.
    19. Wan, Wei & Han, Yiwen & Wu, Hanqing & Liu, Fan & Liu, Zhong, 2021. "Application of the source–sink landscape method in the evaluation of agricultural non-point source pollution: First estimation of an orchard-dominated area in China," Agricultural Water Management, Elsevier, vol. 252(C).
    20. Gao, Wei & Hong, Bongghi & Swaney, Dennis P. & Howarth, Robert W. & Guo, Huaicheng, 2016. "A system dynamics model for managing regional N inputs from human activities," Ecological Modelling, Elsevier, vol. 322(C), pages 82-91.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:19:p:12753-:d:935203. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.