IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i19p12544-d931617.html
   My bibliography  Save this article

Flood Susceptibility in the Lower Course of the Coyuca River, Mexico: A Multi-Criteria Decision Analysis Model

Author

Listed:
  • José Vladimir Morales-Ruano

    (Centro de Ciencias de Desarrollo Regional, Universidad Autónoma de Guerrero, Acapulco 39640, Mexico)

  • Maximino Reyes-Umaña

    (Centro de Ciencias de Desarrollo Regional, Universidad Autónoma de Guerrero, Acapulco 39640, Mexico)

  • Francisco Rubén Sandoval-Vázquez

    (Facultad de Estudios Superiores de Cuautla (FESC), UAEM, Av. Universidad No. 1001, Col. Chamilpa, Cuernavaca 62209, Mexico)

  • Hilda Janet Arellano-Wences

    (Centro de Ciencias de Desarrollo Regional, Universidad Autónoma de Guerrero, Acapulco 39640, Mexico)

  • Justiniano González-González

    (Centro de Ciencias de Desarrollo Regional, Universidad Autónoma de Guerrero, Acapulco 39640, Mexico)

  • Columba Rodríguez-Alviso

    (Centro de Ciencias de Desarrollo Regional, Universidad Autónoma de Guerrero, Acapulco 39640, Mexico)

Abstract

Flooding due to climate change is recurrent and has intensified in the lower course of the Coyuca River. This paper implements a multivariate analysis, including conditioning and triggering factors to develop flood susceptibility mapping in an information-deprived region to help prevent/mitigate flooding. Flood-susceptible areas were identified using the multi-criteria decision analysis (MCDA) methodology, specifically, with the hierarchy analysis process (AHP). Four conditioning and one triggering influence factors were analyzed. The influence weights of each variable were determined using Saaty’s methodology (AHP). Thematic maps for each variable were created and multiplied by their influence value using the raster calculator and added to their variable group to obtain the flood susceptibility map. The findings showed that the susceptibility to flooding was very high in 41.82%, high in 35.95%, medium in 21.25% and low in 0.98% of the study areas. It was revealed that 44.44% of the localities occupy areas of very high susceptibility to flooding. Susceptibility increases in the localities closest to the river.

Suggested Citation

  • José Vladimir Morales-Ruano & Maximino Reyes-Umaña & Francisco Rubén Sandoval-Vázquez & Hilda Janet Arellano-Wences & Justiniano González-González & Columba Rodríguez-Alviso, 2022. "Flood Susceptibility in the Lower Course of the Coyuca River, Mexico: A Multi-Criteria Decision Analysis Model," Sustainability, MDPI, vol. 14(19), pages 1-24, October.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:19:p:12544-:d:931617
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/19/12544/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/19/12544/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Showmitra Kumar Sarkar & Saifullah Bin Ansar & Khondaker Mohammed Mohiuddin Ekram & Mehedi Hasan Khan & Swapan Talukdar & Mohd Waseem Naikoo & Abu Reza Towfiqul Islam & Atiqur Rahman & Amir Mosavi, 2022. "Developing Robust Flood Susceptibility Model with Small Numbers of Parameters in Highly Fertile Regions of Northwest Bangladesh for Sustainable Flood and Agriculture Management," Sustainability, MDPI, vol. 14(7), pages 1-23, March.
    2. Subhankar Chakraborty & Sutapa Mukhopadhyay, 2019. "Assessing flood risk using analytical hierarchy process (AHP) and geographical information system (GIS): application in Coochbehar district of West Bengal, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 99(1), pages 247-274, October.
    3. Winsemius, Hessel C. & Jongman, Brenden & Veldkamp, Ted I.E. & Hallegatte, Stephane & Bangalore, Mook & Ward, Philip J., 2018. "Disaster risk, climate change, and poverty: assessing the global exposure of poor people to floods and droughts," Environment and Development Economics, Cambridge University Press, vol. 23(3), pages 328-348, June.
    4. Ustaoglu, E. & Sisman, S. & Aydınoglu, A.C., 2021. "Determining agricultural suitable land in peri-urban geography using GIS and Multi Criteria Decision Analysis (MCDA) techniques," Ecological Modelling, Elsevier, vol. 455(C).
    5. B. Tellman & J. A. Sullivan & C. Kuhn & A. J. Kettner & C. S. Doyle & G. R. Brakenridge & T. A. Erickson & D. A. Slayback, 2021. "Satellite imaging reveals increased proportion of population exposed to floods," Nature, Nature, vol. 596(7870), pages 80-86, August.
    6. Edmund Penning-Rowsell & Peter Floyd & David Ramsbottom & Suresh Surendran, 2005. "Estimating Injury and Loss of Life in Floods: A Deterministic Framework," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 36(1), pages 43-64, September.
    7. Michalis Diakakis & Spyridon Mavroulis & Giorgos Deligiannakis, 2012. "Floods in Greece, a statistical and spatial approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 62(2), pages 485-500, June.
    8. Guitouni, Adel & Martel, Jean-Marc, 1998. "Tentative guidelines to help choosing an appropriate MCDA method," European Journal of Operational Research, Elsevier, vol. 109(2), pages 501-521, September.
    9. Gerardo Benito & Michel Lang & Mariano Barriendos & M. Llasat & Felix Francés & Taha Ouarda & Varyl Thorndycraft & Yehouda Enzel & Andras Bardossy & Denis Coeur & Bernard Bobée, 2004. "Use of Systematic, Palaeoflood and Historical Data for the Improvement of Flood Risk Estimation. Review of Scientific Methods," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 31(3), pages 623-643, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rui-Song Quan, 2014. "Rainstorm waterlogging risk assessment in central urban area of Shanghai based on multiple scenario simulation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(3), pages 1569-1585, September.
    2. Sadhan Malik & Subodh Chandra Pal & Alireza Arabameri & Indrajit Chowdhuri & Asish Saha & Rabin Chakrabortty & Paramita Roy & Biswajit Das, 2021. "GIS-based statistical model for the prediction of flood hazard susceptibility," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(11), pages 16713-16743, November.
    3. Xu, Xiaozhan, 2004. "A note on the subjective and objective integrated approach to determine attribute weights," European Journal of Operational Research, Elsevier, vol. 156(2), pages 530-532, July.
    4. Mook Bangalore & Andrew Smith & Ted Veldkamp, 2019. "Exposure to Floods, Climate Change, and Poverty in Vietnam," Economics of Disasters and Climate Change, Springer, vol. 3(1), pages 79-99, April.
    5. Hossain, Mohammad Khalid & Meng, Qingmin, 2020. "A fine-scale spatial analytics of the assessment and mapping of buildings and population at different risk levels of urban flood," Land Use Policy, Elsevier, vol. 99(C).
    6. Kornelia Przestrzelska & Katarzyna Wartalska & Weronika Rosińska & Jakub Jurasz & Bartosz Kaźmierczak, 2024. "Climate Resilient Cities: A Review of Blue-Green Solutions Worldwide," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(15), pages 5885-5910, December.
    7. Sean Fox & Felix Agyemang & Laurence Hawker & Jeffrey Neal, 2024. "Integrating social vulnerability into high-resolution global flood risk mapping," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    8. Mulliner, Emma & Smallbone, Kieran & Maliene, Vida, 2013. "An assessment of sustainable housing affordability using a multiple criteria decision making method," Omega, Elsevier, vol. 41(2), pages 270-279.
    9. Vangelis Pitidis & Deodato Tapete & Jon Coaffee & Leon Kapetas & João Porto de Albuquerque, 2018. "Understanding the Implementation Challenges of Urban Resilience Policies: Investigating the Influence of Urban Geological Risk in Thessaloniki, Greece," Sustainability, MDPI, vol. 10(10), pages 1-24, October.
    10. Michele Grimaldi & Monica Sebillo & Giuliana Vitiello & Vincenzo Pellecchia, 2020. "Planning and Managing the Integrated Water System: A Spatial Decision Support System to Analyze the Infrastructure Performances," Sustainability, MDPI, vol. 12(16), pages 1-24, August.
    11. Hajkowicz, Stefan & Higgins, Andrew, 2008. "A comparison of multiple criteria analysis techniques for water resource management," European Journal of Operational Research, Elsevier, vol. 184(1), pages 255-265, January.
    12. Richard S. J. Tol, 2021. "The Economic Impact of Climate in the Long Run," World Scientific Book Chapters, in: Anil Markandya & Dirk Rübbelke (ed.), CLIMATE AND DEVELOPMENT, chapter 1, pages 3-36, World Scientific Publishing Co. Pte. Ltd..
    13. Md. Uzzal Mia & Tahmida Naher Chowdhury & Rabin Chakrabortty & Subodh Chandra Pal & Mohammad Khalid Al-Sadoon & Romulus Costache & Abu Reza Md. Towfiqul Islam, 2023. "Flood Susceptibility Modeling Using an Advanced Deep Learning-Based Iterative Classifier Optimizer," Land, MDPI, vol. 12(4), pages 1-26, April.
    14. Zheng Yuan & Baohua Wen & Cheng He & Jin Zhou & Zhonghua Zhou & Feng Xu, 2022. "Application of Multi-Criteria Decision-Making Analysis to Rural Spatial Sustainability Evaluation: A Systematic Review," IJERPH, MDPI, vol. 19(11), pages 1-31, May.
    15. Tomislav Sunko & Marko Mladineo & Mirjana Kovačić & Toni Mišković, 2024. "Multi-Criteria Analysis of Coast Guard Resource Deployment for Improvement of Maritime Safety and Environmental Protection: Case Study of Eastern Adriatic Sea," Sustainability, MDPI, vol. 16(17), pages 1-17, August.
    16. Sanjib Mondal & Pritam Ghosh & Pratima Rohatgi, 2023. "Village‐level livelihood security: A case study on a wasteland‐dominated forest fringe region of rural India," Regional Science Policy & Practice, Wiley Blackwell, vol. 15(5), pages 1019-1036, June.
    17. Ji, Junping & Wei, Fangling & Ma, Xiaoming, 2011. "深圳水库流域污水处理方案多准则决策研究 [Multicriteria Decision Analysis of Sewage Treatment Plans for Shenzhen Reservoir Basin]," MPRA Paper 59744, University Library of Munich, Germany.
    18. Peter Tangney & Claire Nettle & Beverley Clarke & Joshua Newman & Cassandra Star, 2021. "Climate security in the Indo-Pacific: a systematic review of governance challenges for enhancing regional climate resilience," Climatic Change, Springer, vol. 167(3), pages 1-30, August.
    19. Castells-Quintana, David & del Pilar Lopez-Uribe, Maria & McDermott, Thomas K.J., 2018. "A review of adaptation to climate change through a development economics lens," Working Papers 309605, National University of Ireland, Galway, Socio-Economic Marine Research Unit.
    20. Shuang Liu & Rui Liu & Nengzhi Tan, 2021. "A Spatial Improved-kNN-Based Flood Inundation Risk Framework for Urban Tourism under Two Rainfall Scenarios," Sustainability, MDPI, vol. 13(5), pages 1-18, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:19:p:12544-:d:931617. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.