IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i18p11693-d917800.html
   My bibliography  Save this article

Study on Vehicle–Road Interaction for Autonomous Driving

Author

Listed:
  • Runhua Guo

    (School of Civil Engineering, Tsinghua University, Beijing 100084, China)

  • Siquan Liu

    (School of Civil Engineering, Tsinghua University, Beijing 100084, China)

  • Yulin He

    (School of Transportation Science and Engineering, Harbin Institute of Technology, Harbin 150090, China)

  • Li Xu

    (College of Transportation and Logistics Engineering, Xinjiang Agricultural University, Urumqi 830052, China)

Abstract

Autonomous vehicles (AVs) are becoming increasingly popular, and this can potentially affect road performance. Road performance also influences driving comfort and safety for AVs. In this study, the influence of changes in traffic volume and wheel track distribution caused by AVs on the rutting distress of asphalt pavement was investigated through finite element simulations. A vehicle-mounted three-dimensional laser profiler was used to obtain pavement roughness and texture information. The vehicle vibration acceleration was obtained through vehicle dynamics simulations, and the skid resistance indexes of 20 rutting specimens were collected. The results showed that an increase in traffic volume caused by the increasing AV traffic accelerated the occurrence of rutting distress; however, the uniform distribution of vehicles at both ends of the transverse direction could prolong the maintenance life of flexible and semi-rigid pavements by 0.041 and 0.530 years, respectively. According to Carsim and Trucksim vehicle simulations and multiple linear regression fitting, the relationship models of three factors, namely speed, road roughness, and comfort, showed high fitting accuracies; however, there were some differences among the models. Among the texture indexes, the arithmetic mean’s height ( R a ) had the greatest influence on the tire–road friction coefficient; R a greatly influenced the safe driving of AVs. The findings of this study were used to present a speed control strategy for AVs based on the roughness and texture index for ensuring comfort and safety during automatic driving.

Suggested Citation

  • Runhua Guo & Siquan Liu & Yulin He & Li Xu, 2022. "Study on Vehicle–Road Interaction for Autonomous Driving," Sustainability, MDPI, vol. 14(18), pages 1-22, September.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:18:p:11693-:d:917800
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/18/11693/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/18/11693/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Amirul Ibrahim Abu Bakar & Mohd Azman Abas & Mohd Farid Muhamad Said & Tengku Azrul Tengku Azhar, 2022. "Synthesis of Autonomous Vehicle Guideline for Public Road-Testing Sustainability," Sustainability, MDPI, vol. 14(3), pages 1-18, January.
    2. Felix Becker & Kay W. Axhausen, 2017. "Literature review on surveys investigating the acceptance of automated vehicles," Transportation, Springer, vol. 44(6), pages 1293-1306, November.
    3. Aleksandra Deluka Tibljaš & Tullio Giuffrè & Sanja Surdonja & Salvatore Trubia, 2018. "Introduction of Autonomous Vehicles: Roundabouts Design and Safety Performance Evaluation," Sustainability, MDPI, vol. 10(4), pages 1-14, April.
    4. Bösch, Patrick M. & Becker, Felix & Becker, Henrik & Axhausen, Kay W., 2018. "Cost-based analysis of autonomous mobility services," Transport Policy, Elsevier, vol. 64(C), pages 76-91.
    5. Huiqian Sun & Peng Jing & Mengxuan Zhao & Yuexia Chen & Fengping Zhan & Yuji Shi, 2020. "Research on the Mode Choice Intention of the Elderly for Autonomous Vehicles Based on the Extended Ecological Model," Sustainability, MDPI, vol. 12(24), pages 1-22, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andreja Pucihar & Iztok Zajc & Radovan Sernec & Gregor Lenart, 2019. "Living Lab as an Ecosystem for Development, Demonstration and Assessment of Autonomous Mobility Solutions," Sustainability, MDPI, vol. 11(15), pages 1-21, July.
    2. Nastjuk, Ilja & Herrenkind, Bernd & Marrone, Mauricio & Brendel, Alfred Benedikt & Kolbe, Lutz M., 2020. "What drives the acceptance of autonomous driving? An investigation of acceptance factors from an end-user's perspective," Technological Forecasting and Social Change, Elsevier, vol. 161(C).
    3. Perrine, Kenneth A. & Kockelman, Kara M. & Huang, Yantao, 2020. "Anticipating long-distance travel shifts due to self-driving vehicles," Journal of Transport Geography, Elsevier, vol. 82(C).
    4. Benoît Lécureux & Adrien Bonnet & Ouassim Manout & Jaâfar Berrada & Louafi Bouzouina, 2022. "Acceptance of Shared Autonomous Vehicles: A Literature Review of stated choice experiments," Working Papers hal-03814947, HAL.
    5. Kyunam Kim, 2024. "An Input–Output Analysis for the Economic Potential of a New Convergence Industry: A Focus on the Autonomous Vehicle Sector in South Korea," Sustainability, MDPI, vol. 16(20), pages 1-21, October.
    6. Lindgren, Thomas & Pink, Sarah & Fors, Vaike, 2021. "Fore-sighting autonomous driving - An Ethnographic approach," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
    7. Barbour, Natalia & Menon, Nikhil & Zhang, Yu & Mannering, Fred, 2019. "Shared automated vehicles: A statistical analysis of consumer use likelihoods and concerns," Transport Policy, Elsevier, vol. 80(C), pages 86-93.
    8. M. Eugenia López-Lambas & Andrea Alonso, 2019. "The Driverless Bus: An Analysis of Public Perceptions and Acceptability," Sustainability, MDPI, vol. 11(18), pages 1-15, September.
    9. Doll, Claus & Krauss, Konstantin, 2022. "Nachhaltige Mobilität und innovative Geschäftsmodelle," Studien zum deutschen Innovationssystem 10-2022, Expertenkommission Forschung und Innovation (EFI) - Commission of Experts for Research and Innovation, Berlin.
    10. Weina Qu & Hongli Sun & Yan Ge, 2021. "The effects of trait anxiety and the big five personality traits on self-driving car acceptance," Transportation, Springer, vol. 48(5), pages 2663-2679, October.
    11. Wang, Senlei & Correia, Gonçalo Homem de Almeida & Lin, Hai Xiang, 2022. "Modeling the competition between multiple Automated Mobility on-Demand operators: An agent-based approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 605(C).
    12. Kum Fai Yuen & Do Thi Khanh Huyen & Xueqin Wang & Guanqiu Qi, 2020. "Factors Influencing the Adoption of Shared Autonomous Vehicles," IJERPH, MDPI, vol. 17(13), pages 1-17, July.
    13. Younghoon Seo & Donghyun Lim & Woongbee Son & Yeongmin Kwon & Junghwa Kim & Hyungjoo Kim, 2020. "Deriving Mobility Service Policy Issues Based on Text Mining: A Case Study of Gyeonggi Province in South Korea," Sustainability, MDPI, vol. 12(24), pages 1-20, December.
    14. Kum Fai Yuen & Ling Qian Choo & Xue Li & Yiik Diew Wong & Fei Ma & Xueqin Wang, 2023. "A theoretical investigation of user acceptance of autonomous public transport," Transportation, Springer, vol. 50(2), pages 545-569, April.
    15. Compostella, Junia & Fulton, Lewis M. & De Kleine, Robert & Kim, Hyung Chul & Wallington, Timothy J., 2020. "Near- (2020) and long-term (2030–2035) costs of automated, electrified, and shared mobility in the United States," Transport Policy, Elsevier, vol. 85(C), pages 54-66.
    16. Ballo, Lukas & de Freitas, Lucas Meyer & Meister, Adrian & Axhausen, Kay W., 2023. "The E-Bike City as a radical shift toward zero-emission transport: Sustainable? Equitable? Desirable?," Journal of Transport Geography, Elsevier, vol. 111(C).
    17. Militão, Aitan M. & Tirachini, Alejandro, 2021. "Optimal fleet size for a shared demand-responsive transport system with human-driven vs automated vehicles: A total cost minimization approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 151(C), pages 52-80.
    18. Zwick, Felix & Kuehnel, Nico & Hörl, Sebastian, 2022. "Shifts in perspective: Operational aspects in (non-)autonomous ride-pooling simulations," Transportation Research Part A: Policy and Practice, Elsevier, vol. 165(C), pages 300-320.
    19. Kum Fai Yuen & Grace Chua & Xueqin Wang & Fei Ma & Kevin X. Li, 2020. "Understanding Public Acceptance of Autonomous Vehicles Using the Theory of Planned Behaviour," IJERPH, MDPI, vol. 17(12), pages 1-19, June.
    20. Kassens-Noor, Eva & Kotval-Karamchandani, Zeenat & Cai, Meng, 2020. "Willingness to ride and perceptions of autonomous public transit," Transportation Research Part A: Policy and Practice, Elsevier, vol. 138(C), pages 92-104.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:18:p:11693-:d:917800. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.