IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i17p10518-d895800.html
   My bibliography  Save this article

Genetic-Algorithm-Based Neural Network for Fault Detection and Diagnosis: Application to Grid-Connected Photovoltaic Systems

Author

Listed:
  • Amal Hichri

    (Higher Institute of Applied Sciences and Technology of Kasserine, Kairouan University, Kasserine 1200, Tunisia)

  • Mansour Hajji

    (Higher Institute of Applied Sciences and Technology of Kasserine, Kairouan University, Kasserine 1200, Tunisia)

  • Majdi Mansouri

    (Electrical and Computer Engineering Program, Texas A&M University at Qatar, Doha 23874, Qatar
    Department of Mathematical Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia)

  • Kamaleldin Abodayeh

    (Department of Mathematical Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia)

  • Kais Bouzrara

    (Laboratory of Automatic Signal and Image Processing, National Engineering School of Monastir, Monastir 5000, Tunisia)

  • Hazem Nounou

    (Electrical and Computer Engineering Program, Texas A&M University at Qatar, Doha 23874, Qatar)

  • Mohamed Nounou

    (Chemical Engineering Program, Texas A&M University at Qatar, Doha 23874, Qatar)

Abstract

Modern photovoltaic (PV) systems have received significant attention regarding fault detection and diagnosis (FDD) for enhancing their operation by boosting their dependability, availability, and necessary safety. As a result, the problem of FDD in grid-connected PV (GCPV) systems is discussed in this work. Tools for feature extraction and selection and fault classification are applied in the developed FDD approach to monitor the GCPV system under various operating conditions. This is addressed such that the genetic algorithm (GA) technique is used for selecting the best features and the artificial neural network (ANN) classifier is applied for fault diagnosis. Only the most important features are selected to be supplied to the ANN classifier. The classification performance is determined via different metrics for various GA-based ANN classifiers using data extracted from the healthy and faulty data of the GCPV system. A thorough analysis of 16 faults applied on the module is performed. In general terms, the faults observed in the system are classified under three categories: simple, multiple, and mixed. The obtained results confirm the feasibility and effectiveness with a low computation time of the proposed approach for fault diagnosis.

Suggested Citation

  • Amal Hichri & Mansour Hajji & Majdi Mansouri & Kamaleldin Abodayeh & Kais Bouzrara & Hazem Nounou & Mohamed Nounou, 2022. "Genetic-Algorithm-Based Neural Network for Fault Detection and Diagnosis: Application to Grid-Connected Photovoltaic Systems," Sustainability, MDPI, vol. 14(17), pages 1-14, August.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:17:p:10518-:d:895800
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/17/10518/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/17/10518/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Saba Gul & Azhar Ul Haq & Marium Jalal & Almas Anjum & Ihsan Ullah Khalil, 2019. "A Unified Approach for Analysis of Faults in Different Configurations of PV Arrays and Its Impact on Power Grid," Energies, MDPI, vol. 13(1), pages 1-23, December.
    2. Pablo-Romero, María P. & Sánchez-Braza, Antonio & Galyan, Anna, 2021. "Renewable energy use for electricity generation in transition economies: Evolution, targets and promotion policies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    3. Kouadri, Abdelmalek & Hajji, Mansour & Harkat, Mohamed-Faouzi & Abodayeh, Kamaleldin & Mansouri, Majdi & Nounou, Hazem & Nounou, Mohamed, 2020. "Hidden Markov model based principal component analysis for intelligent fault diagnosis of wind energy converter systems," Renewable Energy, Elsevier, vol. 150(C), pages 598-606.
    4. Fonseca Alves, Ricardo Henrique & Deus Júnior, Getúlio Antero de & Marra, Enes Gonçalves & Lemos, Rodrigo Pinto, 2021. "Automatic fault classification in photovoltaic modules using Convolutional Neural Networks," Renewable Energy, Elsevier, vol. 179(C), pages 502-516.
    5. Chine, W. & Mellit, A. & Lughi, V. & Malek, A. & Sulligoi, G. & Massi Pavan, A., 2016. "A novel fault diagnosis technique for photovoltaic systems based on artificial neural networks," Renewable Energy, Elsevier, vol. 90(C), pages 501-512.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Paweł Ziółkowski & Marta Drosińska-Komor & Jerzy Głuch & Łukasz Breńkacz, 2023. "Review of Methods for Diagnosing the Degradation Process in Power Units Cooperating with Renewable Energy Sources Using Artificial Intelligence," Energies, MDPI, vol. 16(17), pages 1-28, August.
    2. Zahra Yahyaoui & Mansour Hajji & Majdi Mansouri & Kais Bouzrara, 2023. "One-Class Machine Learning Classifiers-Based Multivariate Feature Extraction for Grid-Connected PV Systems Monitoring under Irradiance Variations," Sustainability, MDPI, vol. 15(18), pages 1-20, September.
    3. Ana-Maria Moldovan & Mircea Ion Buzdugan, 2023. "Prediction of Faults Location and Type in Electrical Cables Using Artificial Neural Network," Sustainability, MDPI, vol. 15(7), pages 1-19, April.
    4. Manel Marweni & Mansour Hajji & Majdi Mansouri & Mohamed Fouazi Mimouni, 2023. "Photovoltaic Power Forecasting Using Multiscale-Model-Based Machine Learning Techniques," Energies, MDPI, vol. 16(12), pages 1-16, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mellit, Adel & Kalogirou, Soteris, 2022. "Assessment of machine learning and ensemble methods for fault diagnosis of photovoltaic systems," Renewable Energy, Elsevier, vol. 184(C), pages 1074-1090.
    2. Mojgan Hojabri & Samuel Kellerhals & Govinda Upadhyay & Benjamin Bowler, 2022. "IoT-Based PV Array Fault Detection and Classification Using Embedded Supervised Learning Methods," Energies, MDPI, vol. 15(6), pages 1-18, March.
    3. Kara Mostefa Khelil, Chérifa & Amrouche, Badia & Benyoucef, Abou soufiane & Kara, Kamel & Chouder, Aissa, 2020. "New Intelligent Fault Diagnosis (IFD) approach for grid-connected photovoltaic systems," Energy, Elsevier, vol. 211(C).
    4. Belqasem Aljafari & Siva Rama Krishna Madeti & Priya Ranjan Satpathy & Sudhakar Babu Thanikanti & Bamidele Victor Ayodele, 2022. "Automatic Monitoring System for Online Module-Level Fault Detection in Grid-Tied Photovoltaic Plants," Energies, MDPI, vol. 15(20), pages 1-28, October.
    5. Dhimish, Mahmoud & Holmes, Violeta & Dales, Mark, 2017. "Parallel fault detection algorithm for grid-connected photovoltaic plants," Renewable Energy, Elsevier, vol. 113(C), pages 94-111.
    6. Collin Barker & Sam Cipkar & Tyler Lavigne & Cameron Watson & Maher Azzouz, 2021. "Real-Time Nuisance Fault Detection in Photovoltaic Generation Systems Using a Fine Tree Classifier," Sustainability, MDPI, vol. 13(4), pages 1-15, February.
    7. Pavel Kuznetsov & Dmitry Kotelnikov & Leonid Yuferev & Vladimir Panchenko & Vadim Bolshev & Marek Jasiński & Aymen Flah, 2022. "Method for the Automated Inspection of the Surfaces of Photovoltaic Modules," Sustainability, MDPI, vol. 14(19), pages 1-16, September.
    8. Mariusz T. Sarniak, 2020. "Researches of the Impact of the Nominal Power Ratio and Environmental Conditions on the Efficiency of the Photovoltaic System: A Case Study for Poland in Central Europe," Sustainability, MDPI, vol. 12(15), pages 1-15, July.
    9. Fonseca Alves, Ricardo Henrique & Deus Júnior, Getúlio Antero de & Marra, Enes Gonçalves & Lemos, Rodrigo Pinto, 2021. "Automatic fault classification in photovoltaic modules using Convolutional Neural Networks," Renewable Energy, Elsevier, vol. 179(C), pages 502-516.
    10. Youssef, Ayman & El-Telbany, Mohammed & Zekry, Abdelhalim, 2017. "The role of artificial intelligence in photo-voltaic systems design and control: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 72-79.
    11. Sairam, Seshapalli & Seshadhri, Subathra & Marafioti, Giancarlo & Srinivasan, Seshadhri & Mathisen, Geir & Bekiroglu, Korkut, 2022. "Edge-based Explainable Fault Detection Systems for photovoltaic panels on edge nodes," Renewable Energy, Elsevier, vol. 185(C), pages 1425-1440.
    12. Arpad Gellert & Stefan-Alexandru Precup & Alexandru Matei & Bogdan-Constantin Pirvu & Constantin-Bala Zamfirescu, 2022. "Real-Time Assembly Support System with Hidden Markov Model and Hybrid Extensions," Mathematics, MDPI, vol. 10(15), pages 1-21, August.
    13. Pillai, Dhanup S. & Rajasekar, N., 2018. "Metaheuristic algorithms for PV parameter identification: A comprehensive review with an application to threshold setting for fault detection in PV systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3503-3525.
    14. Mellit, A. & Tina, G.M. & Kalogirou, S.A., 2018. "Fault detection and diagnosis methods for photovoltaic systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1-17.
    15. Li, Yuanliang & Ding, Kun & Zhang, Jingwei & Chen, Fudong & Chen, Xiang & Wu, Jiabing, 2019. "A fault diagnosis method for photovoltaic arrays based on fault parameters identification," Renewable Energy, Elsevier, vol. 143(C), pages 52-63.
    16. Yichen Zhou & Xiaohui Yang & Lingyu Tao & Li Yang, 2021. "Transformer Fault Diagnosis Model Based on Improved Gray Wolf Optimizer and Probabilistic Neural Network," Energies, MDPI, vol. 14(11), pages 1-21, May.
    17. Andreea-Ileana Zamfir & Elena Oana Croitoru & Cristina Burlacioiu & Cosmin Dobrin, 2022. "Renewable Energies: Economic and Energy Impact in the Context of Increasing the Share of Electric Cars in EU," Energies, MDPI, vol. 15(23), pages 1-19, November.
    18. Tingting Pei & Xiaohong Hao, 2019. "A Fault Detection Method for Photovoltaic Systems Based on Voltage and Current Observation and Evaluation," Energies, MDPI, vol. 12(9), pages 1-16, May.
    19. Zahra Yahyaoui & Mansour Hajji & Majdi Mansouri & Kais Bouzrara, 2023. "One-Class Machine Learning Classifiers-Based Multivariate Feature Extraction for Grid-Connected PV Systems Monitoring under Irradiance Variations," Sustainability, MDPI, vol. 15(18), pages 1-20, September.
    20. Shi, Jihao & Li, Junjie & Usmani, Asif Sohail & Zhu, Yuan & Chen, Guoming & Yang, Dongdong, 2021. "Probabilistic real-time deep-water natural gas hydrate dispersion modeling by using a novel hybrid deep learning approach," Energy, Elsevier, vol. 219(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:17:p:10518-:d:895800. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.