IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i14p8953-d868289.html
   My bibliography  Save this article

Spatially Explicit River Basin Models for Cost-Benefit Analyses to Optimize Land Use

Author

Listed:
  • Jawad Ghafoor

    (Department of Animal Sciences and Aquatic Ecology, Ghent University, 9000 Ghent, Belgium)

  • Marie Anne Eurie Forio

    (Department of Animal Sciences and Aquatic Ecology, Ghent University, 9000 Ghent, Belgium)

  • Peter L. M. Goethals

    (Department of Animal Sciences and Aquatic Ecology, Ghent University, 9000 Ghent, Belgium)

Abstract

Recently, a wide range of models have been used in analyzing the costs and benefits of land utilization in river basins. Despite these advances, there is not enough information on how to select appropriate models to perform cost-benefit analyses. A literature search in the Web of Science (WOS) online database was implemented and resulted in the selection of 27 articles that utilized models to perform cost-benefit analyses of river basins. The models reviewed in these papers were categorized into five types: process-based, statistical, probabilistic, data-driven, and modeling frameworks or integrated models. Twenty-six models were reviewed based on their data and input variable needs and user convenience. A SWOT analysis was also performed to highlight the strengths, weaknesses, opportunities, and threats of these models. One of the main strengths is their ability to perform scenario-based analyses while the main drawback is the limited availability of data impeding the use of the models. We found that, to some extent, there is an increase in model applicability as the number of input variables increases but there are exceptions to this observation. Future studies should explicitly report on the necessary time needed for data collection, model development and/or training, and model application. This information is highly valuable to users and modelers when choosing which model to use in performing a particular cost-benefit analysis. These models can be developed and applied to assist sustainable development as well as the sustainable utilization of agricultural parcels within a river basin, which can eventually reduce the negative impacts of intensive agriculture and minimize habitat degradation on water resources.

Suggested Citation

  • Jawad Ghafoor & Marie Anne Eurie Forio & Peter L. M. Goethals, 2022. "Spatially Explicit River Basin Models for Cost-Benefit Analyses to Optimize Land Use," Sustainability, MDPI, vol. 14(14), pages 1-16, July.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:14:p:8953-:d:868289
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/14/8953/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/14/8953/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ding, Tao & Liang, Liang & Zhou, Kaile & Yang, Min & Wei, Yuqi, 2020. "Water-energy nexus: The origin, development and prospect," Ecological Modelling, Elsevier, vol. 419(C).
    2. Mwambo, Francis Molua & Fürst, Christine & Nyarko, Benjamin K. & Borgemeister, Christian & Martius, Christopher, 2020. "Maize production and environmental costs: Resource evaluation and strategic land use planning for food security in northern Ghana by means of coupled emergy and data envelopment analysis," Land Use Policy, Elsevier, vol. 95(C).
    3. Jahanifar, Komeil & Amirnejad, Hamid & Azadi, Hossein & Adenle, Ademola A. & Scheffran, Jürgen, 2019. "Economic analysis of land use changes in forests and rangelands: Developing conservation strategies," Land Use Policy, Elsevier, vol. 88(C).
    4. Lina Sun & Wenxi Lu & Qingchun Yang & Jordi Martín & Di Li, 2013. "Ecological Compensation Estimation of Soil and Water Conservation Based on Cost-Benefit Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(8), pages 2709-2727, June.
    5. Massimo Conforti & Gaetano Robustelli & Francesco Muto & Salvatore Critelli, 2012. "Application and validation of bivariate GIS-based landslide susceptibility assessment for the Vitravo river catchment (Calabria, south Italy)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 61(1), pages 127-141, March.
    6. Pan, Ying & Wu, Junxi & Zhang, Yanjie & Zhang, Xianzhou & Yu, Chengqun, 2021. "Simultaneous enhancement of ecosystem services and poverty reduction through adjustments to subsidy policies relating to grassland use in Tibet, China," Ecosystem Services, Elsevier, vol. 48(C).
    7. Forio, Marie Anne Eurie & Mouton, Ans & Lock, Koen & Boets, Pieter & Nguyen, Thi Hanh Tien & Damanik Ambarita, Minar Naomi & Musonge, Peace Liz Sasha & Dominguez-Granda, Luis & Goethals, Peter L.M., 2017. "Fuzzy modelling to identify key drivers of ecological water quality to support decision and policy making," Environmental Science & Policy, Elsevier, vol. 68(C), pages 58-68.
    8. Chang-Jo Chung & Andrea Fabbri, 2003. "Validation of Spatial Prediction Models for Landslide Hazard Mapping," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 30(3), pages 451-472, November.
    9. Crossman, Neville D. & Connor, Jeffrey D. & Bryan, Brett A. & Summers, David M. & Ginnivan, John, 2010. "Reconfiguring an irrigation landscape to improve provision of ecosystem services," Ecological Economics, Elsevier, vol. 69(5), pages 1031-1042, March.
    10. Brouwer, Roy & van Ek, Remco, 2004. "Integrated ecological, economic and social impact assessment of alternative flood control policies in the Netherlands," Ecological Economics, Elsevier, vol. 50(1-2), pages 1-21, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. L. Lombardo & M. Cama & M. Maerker & E. Rotigliano, 2014. "A test of transferability for landslides susceptibility models under extreme climatic events: application to the Messina 2009 disaster," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(3), pages 1951-1989, December.
    2. Hajkowicz, Stefan, 2006. "Taking a closer look at multiple criteria analysis and economic evaluation," 2006 Conference (50th), February 8-10, 2006, Sydney, Australia 139785, Australian Agricultural and Resource Economics Society.
    3. Allan Beltrán & David Maddison & Robert J. R. Elliott, 2018. "Assessing the Economic Benefits of Flood Defenses: A Repeat‐Sales Approach," Risk Analysis, John Wiley & Sons, vol. 38(11), pages 2340-2367, November.
    4. E. Rotigliano & C. Cappadonia & C. Conoscenti & D. Costanzo & V. Agnesi, 2012. "Slope units-based flow susceptibility model: using validation tests to select controlling factors," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 61(1), pages 143-153, March.
    5. Sebastian Scheuer & Dagmar Haase & Volker Meyer, 2011. "Exploring multicriteria flood vulnerability by integrating economic, social and ecological dimensions of flood risk and coping capacity: from a starting point view towards an end point view of vulnera," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 58(2), pages 731-751, August.
    6. David Nortes Martínez & Frédéric Grelot & Pauline Bremond & Stefano Farolfi & Juliette Rouchier, 2021. "Are interactions important in estimating flood damage to economic entities? The case of wine-making in France," Post-Print hal-03609616, HAL.
    7. Kourosh Shirani & Mehrdad Pasandi & Alireza Arabameri, 2018. "Landslide susceptibility assessment by Dempster–Shafer and Index of Entropy models, Sarkhoun basin, Southwestern Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 93(3), pages 1379-1418, September.
    8. Kun Cheng & Qiang Fu & Xi Chen & Tianxiao Li & Qiuxiang Jiang & Xiaosong Ma & Ke Zhao, 2015. "Adaptive Allocation Modeling for a Complex System of Regional Water and Land Resources Based on Information Entropy and its Application," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(14), pages 4977-4993, November.
    9. Jun Liu & Yuyan Zhou & Lihua Chen & Lichuan Wang, 2023. "Assessing the Impact of Climate Change on Water Usage in Typical Industrial Enterprises," Sustainability, MDPI, vol. 15(13), pages 1-18, June.
    10. Hrozencik, Aaron & Aillery, Marcel, 2021. "Trends in U.S. Irrigated Agriculture: Increasing Resilience Under Water Supply Scarcity," Economic Information Bulletin 327359, United States Department of Agriculture, Economic Research Service.
    11. Xinqi Zheng & Bing Geng & Xiang Wu & Lina Lv & Yecui Hu, 2014. "Performance Evaluation of Industrial Land Policy in China," Sustainability, MDPI, vol. 6(8), pages 1-16, July.
    12. Xin Jiang & Yuyu Liu & Ranhang Zhao, 2019. "A Framework for Ecological Compensation Assessment: A Case Study in the Upper Hun River Basin, Northeast China," Sustainability, MDPI, vol. 11(4), pages 1-13, February.
    13. Bark, Rosalind H. & Colloff, Matthew J. & Hatton MacDonald, Darla & Pollino, Carmel A. & Jackson, Sue & Crossman, Neville D., 2016. "Integrated valuation of ecosystem services obtained from restoring water to the environment in a major regulated river basin," Ecosystem Services, Elsevier, vol. 22(PB), pages 381-391.
    14. Cano-Rodríguez, Sara & Rubio-Varas, Mar & Sesma-Martín, Diego, 2022. "At the crossroad between green and thirsty: Carbon emissions and water consumption of Spanish thermoelectricity generation, 1969–2019," Ecological Economics, Elsevier, vol. 195(C).
    15. Posthumus, H. & Rouquette, J.R. & Morris, J. & Gowing, D.J.G. & Hess, T.M., 2010. "A framework for the assessment of ecosystem goods and services; a case study on lowland floodplains in England," Ecological Economics, Elsevier, vol. 69(7), pages 1510-1523, May.
    16. Lundgren, Jakob, 2022. "Unity through disunity: Strengths, values, and tensions in the disciplinary discourse of ecological economics," Ecological Economics, Elsevier, vol. 191(C).
    17. T. D. Pol & S. Gabbert & H.-P. Weikard & E. C. Ierland & E. M. T. Hendrix, 2017. "A Minimax Regret Analysis of Flood Risk Management Strategies Under Climate Change Uncertainty and Emerging Information," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 68(4), pages 1087-1109, December.
    18. Sun, Xueqing & Xiang, Pengcheng & Cong, Kexin, 2023. "Research on early warning and control measures for arable land resource security," Land Use Policy, Elsevier, vol. 128(C).
    19. Maraseni, Tek Narayan & Cockfield, Geoff, 2015. "The financial implications of converting farmland to state-supported environmental plantings in the Darling Downs region, Queensland," Agricultural Systems, Elsevier, vol. 135(C), pages 57-65.
    20. Anna Rita Scorzini & Maurizio Leopardi, 2017. "River basin planning: from qualitative to quantitative flood risk assessment: the case of Abruzzo Region (central Italy)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(1), pages 71-93, August.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:14:p:8953-:d:868289. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.