IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i14p8724-d864382.html
   My bibliography  Save this article

Spatiotemporal Evolution of Water Resource Utilization and Economic Development in the Arid Region of China: A “Matching-Constraint” Perspective

Author

Listed:
  • Junyu Ding

    (College of Geography and Environmental Science, Northwest Normal University, Lanzhou 730070, China)

  • Yongping Bai

    (College of Geography and Environmental Science, Northwest Normal University, Lanzhou 730070, China)

  • Xuedi Yang

    (College of Resources and Environment, Lanzhou University, Lanzhou 730000, China)

  • Zuqiao Gao

    (College of Geography and Environmental Science, Northwest Normal University, Lanzhou 730070, China)

Abstract

Water resources are the most important guarantees for sustainable socioeconomic development in arid regions. However, serious water scarcity puts great pressure on the sustainable development of the northwest arid region of China. Based on the “matching-constraint” perspective, this study used the Gini coefficient, imbalance index, and growth drag model of water resources to quantify the spatiotemporal evolution of water resource utilization (WRU) and economic development (ED) in the northwest arid region from 2009 to 2019. The results showed the following: (1) The matching degree of WRU and ED in Gansu and Xinjiang from 2009 to 2019 was poorer than that in Ningxia, Shaanxi, and Qinghai. Cities with the high matching type of WRU and ED were dominant, with a proportion of 60.78%. (2) During the study period, the growth drag of water resources showed an “N-shaped” change of “rising–declining–rising” and a spatial pattern of “decreasing from inland to coastal” in the northwest arid region. The average growth drag coefficients for the five northwestern provinces were as follows: Xinjiang (2.22%), Gansu (1.61%), Ningxia (1.41%), Qinghai (1.01%), and Shaanxi (0.84%). The total percentage of low and medium constraint type cities was 74.51%. (3) Based on the urban “matching-constraint” types, the WRU status was divided into four zone types: Zones I and IV had relatively well-allocated water resources; however, zone IV had more significant water resource constraints, with the growth drag coefficient ranging from 1.10% to 2.30%. An imbalance between WRU and ED existed in Zones II and III; moreover, the water resource constraints of these two zones were also significant, with growth drag coefficients ranging from 0.12% to 1.47% and 1.03% to 2.90%, respectively. Additionally, we explored the driving mechanisms of WRU and sustainable ED in the northwest arid region. Policy recommendations are proposed for the optimal use of water resources, capital, and labor for different types of cities.

Suggested Citation

  • Junyu Ding & Yongping Bai & Xuedi Yang & Zuqiao Gao, 2022. "Spatiotemporal Evolution of Water Resource Utilization and Economic Development in the Arid Region of China: A “Matching-Constraint” Perspective," Sustainability, MDPI, vol. 14(14), pages 1-19, July.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:14:p:8724-:d:864382
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/14/8724/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/14/8724/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ma, Weijing & Meng, Lihong & Wei, Feili & Opp, Christian & Yang, Dewei, 2021. "Spatiotemporal variations of agricultural water footprint and socioeconomic matching evaluation from the perspective of ecological function zone," Agricultural Water Management, Elsevier, vol. 249(C).
    2. Yang, Guiyu & Li, Shuoyang & Wang, Hao & Wang, Lin, 2022. "Study on agricultural cultivation development layout based on the matching characteristic of water and land resources in North China Plain," Agricultural Water Management, Elsevier, vol. 259(C).
    3. Tom Gleeson & Yoshihide Wada & Marc F. P. Bierkens & Ludovicus P. H. van Beek, 2012. "Water balance of global aquifers revealed by groundwater footprint," Nature, Nature, vol. 488(7410), pages 197-200, August.
    4. Krishna Malakar & Trupti Mishra & Anand Patwardhan, 2018. "Inequality in water supply in India: an assessment using the Gini and Theil indices," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 20(2), pages 841-864, April.
    5. William D. Nordhaus, 1992. "Lethal Model 2: The Limits to Growth Revisited," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 23(2), pages 1-60.
    6. Yuchen Pan & Li Ma & Hong Tang & Yiwen Wu & Zhongjian Yang, 2021. "Land Use Transitions under Rapid Urbanization in Chengdu-Chongqing Region: A Perspective of Coupling Water and Land Resources," Land, MDPI, vol. 10(8), pages 1-21, August.
    7. Bruvoll, Annegrete & Glomsrod, Solveig & Vennemo, Haakon, 1999. "Environmental drag: evidence from Norway," Ecological Economics, Elsevier, vol. 30(2), pages 235-249, August.
    8. Yan, Dong & Chen, Lin & Sun, Huaiwei & Liao, Weihong & Chen, Haorui & Wei, Guanghui & Zhang, Wenxin & Tuo, Ye, 2022. "Allocation of ecological water rights considering ecological networks in arid watersheds: A framework and case study of Tarim River basin," Agricultural Water Management, Elsevier, vol. 267(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cameron Hepburn & Alex Bowen, 2013. "Prosperity with growth: economic growth, climate change and environmental limits," Chapters, in: Roger Fouquet (ed.), Handbook on Energy and Climate Change, chapter 29, pages 617-638, Edward Elgar Publishing.
    2. Mengzhen Zhao & Zhenhua Chen & Hailing Zhang & Junbo Xue, 2018. "Impact Assessment of Growth Drag and Its Contribution Factors: Evidence from China’s Agricultural Economy," Sustainability, MDPI, vol. 10(9), pages 1-15, September.
    3. Wu, Haitao & Hao, Yu & Weng, Jia-Hsi, 2019. "How does energy consumption affect China's urbanization? New evidence from dynamic threshold panel models," Energy Policy, Elsevier, vol. 127(C), pages 24-38.
    4. Yuchen Pan & Li Ma & Hong Tang & Yiwen Wu & Zhongjian Yang, 2021. "Land Use Transitions under Rapid Urbanization in Chengdu-Chongqing Region: A Perspective of Coupling Water and Land Resources," Land, MDPI, vol. 10(8), pages 1-21, August.
    5. Caijing Zhao & Yuming Wu & Xinyue Ye & Baijun Wu & Sonali Kudva, 2019. "The direct and indirect drag effects of land and energy on urban economic growth in the Yangtze River Delta, China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 21(6), pages 2945-2962, December.
    6. Xu, Xianghui & Chen, Yingshan & Zhou, Yan & Liu, Wuyuan & Zhang, Xinrui & Li, Mo, 2023. "Sustainable management of agricultural water rights trading under uncertainty: An optimization-evaluation framework," Agricultural Water Management, Elsevier, vol. 280(C).
    7. Pogany, Peter, 2013. "Thermodynamic Isolation and the New World Order," MPRA Paper 49924, University Library of Munich, Germany.
    8. Smulders, Sjak & Gradus, Raymond, 1996. "Pollution abatement and long-term growth," European Journal of Political Economy, Elsevier, vol. 12(3), pages 505-532, November.
    9. Badunenko, Oleg & Galeotti, Marzio & Hunt, Lester C., 2021. "Better to grow or better to improve? Measuring environmental efficiency in OECD countries with a Stochastic Environmental Kuznets Frontier," FEEM Working Papers 316226, Fondazione Eni Enrico Mattei (FEEM).
    10. Yi Ge & Guangfei Yang & Yi Chen & Wen Dou, 2019. "Examining Social Vulnerability and Inequality: A Joint Analysis through a Connectivity Lens in the Urban Agglomerations of China," Sustainability, MDPI, vol. 11(4), pages 1-19, February.
    11. Ondřej Šíma, 2020. "Reálná ekonomika jako zdroj nerovnováhy obchodní bilance - základní přístup [Real Economy as a Source of Trade Balance Disequilibrium - Basic Approach]," Politická ekonomie, Prague University of Economics and Business, vol. 2020(3), pages 322-347.
    12. Robbie Maris & Mark Holmes, 2023. "Economic Growth Theory and Natural Resource Constraints: A Stocktake and Critical Assessment," Australian Economic Review, The University of Melbourne, Melbourne Institute of Applied Economic and Social Research, vol. 56(2), pages 255-268, June.
    13. Joshua M. Epstein, 2007. "Agent-Based Computational Models and Generative Social Science," Introductory Chapters, in: Generative Social Science Studies in Agent-Based Computational Modeling, Princeton University Press.
    14. Siyu Yue & Huaien Li & Fengmin Song, 2023. "Temporal–Spatial Variations in the Economic Value Produced by Environmental Flows in a Water Shortage Area in Northwest China," Sustainability, MDPI, vol. 15(4), pages 1-17, February.
    15. Aparicio, Jesus & Tenza-Abril, Antonio & Borg, Malcolm & Galea, John & Candela, Lucila, 2018. "Agricultural irrigation of vine crops from desalinated and brackish groundwater under an economic perspective. A case study in Siġġiewi, Malta," MPRA Paper 92268, University Library of Munich, Germany, revised 04 Sep 2018.
    16. Jayanta Das & A. T. M. Sakiur Rahman & Tapash Mandal & Piu Saha, 2021. "Exploring driving forces of large-scale unsustainable groundwater development for irrigation in lower Ganga River basin in India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(5), pages 7289-7309, May.
    17. R駩s Chenavaz & Octavio Escobar, 2015. "Population distribution, effective area and economic growth," Applied Economics, Taylor & Francis Journals, vol. 47(53), pages 5776-5790, November.
    18. Thorvaldur Gylfason & Gylfi Zoega, 2006. "Natural Resources and Economic Growth: The Role of Investment," The World Economy, Wiley Blackwell, vol. 29(8), pages 1091-1115, August.
    19. Martínez-Sánchez, José F. & Pérez-Lechuga, Gilberto & Venegas-Martínez, Francisco (ed.), 2017. "Modelos para la toma de decisiones en la Ingeniería Económica y Financiera: Un enfoque estocástico Vol 3," Sección de Estudios de Posgrado e Investigación de la Escuela Superios de Economía del Instituto Politécnico Nacional, Escuela Superior de Economía, Instituto Politécnico Nacional, edition 1, volume 3, number 017, July.
    20. Kyriakopoulou , Efthymia & Xepapadeas, Anastasios, 2014. "Atmospheric Pollution in Rapidly Growing Urban Centers: Spatial Policies and Land Use Patterns," Working Papers in Economics 601, University of Gothenburg, Department of Economics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:14:p:8724-:d:864382. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.