IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v10y2021i8p812-d606897.html
   My bibliography  Save this article

Land Use Transitions under Rapid Urbanization in Chengdu-Chongqing Region: A Perspective of Coupling Water and Land Resources

Author

Listed:
  • Yuchen Pan

    (School of Public Affairs, Chongqing University, Chongqing 400044, China)

  • Li Ma

    (School of Public Affairs, Chongqing University, Chongqing 400044, China)

  • Hong Tang

    (Sichuan Center for Rural Development Research, College of Management, Sichuan Agricultural University, Chengdu 611130, China)

  • Yiwen Wu

    (School of Public Affairs, Chongqing University, Chongqing 400044, China)

  • Zhongjian Yang

    (Sichuan Center for Rural Development Research, College of Management, Sichuan Agricultural University, Chengdu 611130, China)

Abstract

Land resources and water resources are the important material basis of economic and social development, and their pattern determines the pattern of development. Based on the panel data of the Chengdu–Chongqing Economic Circle from 2011 to 2018, this paper evaluates the matching degree of water and land resources, and their respective matching degrees with the economic development in the Chengdu–Chongqing Economic Circle with the Gini coefficient method. Based on the two-way fixed effect model, an extended Cobb–Douglas production function model is established to analyze the sensitivity of economic growth to land and water factors. In addition, the restriction degree of water and land resources to the economic development of the Chengdu–Chongqing Economic Circle is measured quantitatively by using the growth damping coefficient. The results show that the water and land resources and economic development of the Chengdu–Chongqing Economic Circle have a high matching degree, but the inner cities have a great difference. The contribution of water resources to economic growth is greater than that of land resources. Both of them have a little growth drag, which shows that industrial development has disposed of the dependence of water and land resources. The development of the Chengdu–Chongqing Economic Circle needs to play the role of technological progress in promoting economic growth, and at the same time optimize the use of water and land resources to reduce its constraints on the economic growth. Finally, the policy suggestions of matching water and land resources and economic growth in different regions are put forward.

Suggested Citation

  • Yuchen Pan & Li Ma & Hong Tang & Yiwen Wu & Zhongjian Yang, 2021. "Land Use Transitions under Rapid Urbanization in Chengdu-Chongqing Region: A Perspective of Coupling Water and Land Resources," Land, MDPI, vol. 10(8), pages 1-21, August.
  • Handle: RePEc:gam:jlands:v:10:y:2021:i:8:p:812-:d:606897
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/10/8/812/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/10/8/812/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ma, Li & Long, Hualou & Tu, Shuangshuang & Zhang, Yingnan & Zheng, Yuhan, 2020. "Farmland transition in China and its policy implications," Land Use Policy, Elsevier, vol. 92(C).
    2. Yaobin Liu, 2013. "Economic growth drag in the Central China: evidence from a panel analysis," Applied Economics, Taylor & Francis Journals, vol. 45(16), pages 2163-2174, June.
    3. Birol, Ekin & Koundouri, Phoebe & Kountouris, Yiannis, 2010. "Assessing the economic viability of alternative water resources in water-scarce regions: Combining economic valuation, cost-benefit analysis and discounting," Ecological Economics, Elsevier, vol. 69(4), pages 839-847, February.
    4. Feng Wu & Jinyan Zhan & Qian Zhang & Zhongxiao Sun & Zhan Wang, 2014. "Evaluating Impacts of Industrial Transformation on Water Consumption in the Heihe River Basin of Northwest China," Sustainability, MDPI, vol. 6(11), pages 1-14, November.
    5. Hualin Xie & Zhenhong Zhu & Bohao Wang & Guiying Liu & Qunli Zhai, 2018. "Does the Expansion of Urban Construction Land Promote Regional Economic Growth in China? Evidence from 108 Cities in the Yangtze River Economic Belt," Sustainability, MDPI, vol. 10(11), pages 1-15, November.
    6. Qu, Yanbo & Jiang, Guang-hui & Li, Zitong & Tian, Yaya & Wei, Shuwen, 2019. "Understanding rural land use transition and regional consolidation implications in China," Land Use Policy, Elsevier, vol. 82(C), pages 742-753.
    7. Mengzhen Zhao & Zhenhua Chen & Hailing Zhang & Junbo Xue, 2018. "Impact Assessment of Growth Drag and Its Contribution Factors: Evidence from China’s Agricultural Economy," Sustainability, MDPI, vol. 10(9), pages 1-15, September.
    8. Zhang, Yingnan & Long, Hualou & Li, Yurui & Ge, Dazhuan & Tu, Shuangshuang, 2020. "How does off-farm work affect chemical fertilizer application? Evidence from China’s mountainous and plain areas," Land Use Policy, Elsevier, vol. 99(C).
    9. Ji, Xi & Han, Mengyao & Ulgiati, Sergio, 2020. "Optimal allocation of direct and embodied arable land associated to urban economy: Understanding the options deriving from economic globalization," Land Use Policy, Elsevier, vol. 91(C).
    10. Lu, Xiao & Shi, Yangyang & Chen, Changling & Yu, Miao, 2017. "Monitoring cropland transition and its impact on ecosystem services value in developed regions of China: A case study of Jiangsu Province," Land Use Policy, Elsevier, vol. 69(C), pages 25-40.
    11. Liu, Yating & Chen, Bin, 2020. "Water-energy scarcity nexus risk in the national trade system based on multiregional input-output and network environ analyses," Applied Energy, Elsevier, vol. 268(C).
    12. William D. Nordhaus, 1992. "Lethal Model 2: The Limits to Growth Revisited," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 23(2), pages 1-60.
    13. Shasha Wang & Rongrong Li, 2018. "Toward the Coordinated Sustainable Development of Urban Water Resource Use and Economic Growth: An Empirical Analysis of Tianjin City, China," Sustainability, MDPI, vol. 10(5), pages 1-13, April.
    14. Bruvoll, Annegrete & Glomsrod, Solveig & Vennemo, Haakon, 1999. "Environmental drag: evidence from Norway," Ecological Economics, Elsevier, vol. 30(2), pages 235-249, August.
    15. Song, Malin & Ma, Xiaowei & Shang, Yuping & Zhao, Xin, 2020. "Influences of land resource assets on economic growth and fluctuation in China," Resources Policy, Elsevier, vol. 68(C).
    16. Ge, Dazhuan & Long, Hualou & Zhang, Yingnan & Ma, Li & Li, Tingting, 2018. "Farmland transition and its influences on grain production in China," Land Use Policy, Elsevier, vol. 70(C), pages 94-105.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Muhammad Sohail Amjad Makhdum & Muhammad Usman & Rakhshanda Kousar & Javier Cifuentes-Faura & Magdalena Radulescu & Daniel Balsalobre-Lorente, 2022. "How Do Institutional Quality, Natural Resources, Renewable Energy, and Financial Development Reduce Ecological Footprint without Hindering Economic Growth Trajectory? Evidence from China," Sustainability, MDPI, vol. 14(21), pages 1-25, October.
    2. Binghao Sun & Xinlan Liang & Bingchang Li & Jiahao Liu & Lingfeng Wu & Yizhang Liu, 2025. "Spatiotemporal Evolution and Optimization of Urbanization–Water Environment Coupling in the Cheng-Yu Region," Land, MDPI, vol. 14(2), pages 1-23, February.
    3. Xinhai Lu & Yuejiao Chen & Xiangyu Fan & Xinpeng Liu, 2024. "Effects of Land Use Transition on Regional Ecological Environment—A Case Study of Zhaosu County, Xinjiang," Land, MDPI, vol. 13(12), pages 1-20, December.
    4. Qikang Zhong & Zhe Li & Yujing He, 2023. "Coupling Evaluation and Spatial–Temporal Evolution of Land Ecosystem Services and Economic–Social Development in a City Group: The Case Study of the Chengdu–Chongqing City Group," IJERPH, MDPI, vol. 20(6), pages 1-29, March.
    5. Hong Shi & Ji Yang & Qijuan Liu & Taohong Li & Ning Chris Chen, 2024. "Impacts of Climate and Land-Use Change on Fraction Vegetation Coverage Based on PLUS-Dimidiate Pixel Model," Sustainability, MDPI, vol. 16(23), pages 1-18, November.
    6. Hualou Long & Xiangbin Kong & Shougeng Hu & Yurui Li, 2021. "Land Use Transitions under Rapid Urbanization: A Perspective from Developing China," Land, MDPI, vol. 10(9), pages 1-9, September.
    7. Xiang Zou & Peng Hu & Jianping Zhang & Qingang Wu & Xiaoxia Zhou, 2024. "Unraveling Urban Network Dynamics with Complex Network Modeling: a Case Study of Chengdu, China," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 15(4), pages 15652-15674, December.
    8. Junyu Ding & Yongping Bai & Xuedi Yang & Zuqiao Gao, 2022. "Spatiotemporal Evolution of Water Resource Utilization and Economic Development in the Arid Region of China: A “Matching-Constraint” Perspective," Sustainability, MDPI, vol. 14(14), pages 1-19, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hualou Long & Yingnan Zhang & Li Ma & Shuangshuang Tu, 2021. "Land Use Transitions: Progress, Challenges and Prospects," Land, MDPI, vol. 10(9), pages 1-20, August.
    2. Dang, Yuxuan & Zhao, Zhenting & Kong, Xiangbin & Lei, Ming & Liao, Yubo & Xie, Zhen & Song, Wei, 2023. "Discerning the process of cultivated land governance transition in China since the reform and opening-up-- Based on the multiple streams framework," Land Use Policy, Elsevier, vol. 133(C).
    3. Zhiyuan Zhu & Zhenzhong Dai & Shilin Li & Yongzhong Feng, 2022. "Spatiotemporal Evolution of Non-Grain Production of Cultivated Land and Its Underlying Factors in China," IJERPH, MDPI, vol. 19(13), pages 1-15, July.
    4. Meijing Chen & Zhongke Bai & Qingri Wang & Zeyu Shi, 2021. "Habitat Quality Effect and Driving Mechanism of Land Use Transitions: A Case Study of Henan Water Source Area of the Middle Route of the South-to-North Water Transfer Project," Land, MDPI, vol. 10(8), pages 1-20, July.
    5. Caijing Zhao & Yuming Wu & Xinyue Ye & Baijun Wu & Sonali Kudva, 2019. "The direct and indirect drag effects of land and energy on urban economic growth in the Yangtze River Delta, China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 21(6), pages 2945-2962, December.
    6. Ligang Lyu & Zhoubing Gao & Hualou Long & Xiaorui Wang & Yeting Fan, 2021. "Farmland Use Transition in a Typical Farming Area: The Case of Sihong County in the Huang-Huai-Hai Plain of China," Land, MDPI, vol. 10(4), pages 1-16, March.
    7. Dong Han & Jiajun Qiao & Qiankun Zhu & Jie Xiao & Yuling Ma, 2022. "Endogenous Driving Forces in Ecology-Production-Living Space Changes at Micro-Scale: A Mountain Town Example in Inland China," Land, MDPI, vol. 11(12), pages 1-30, December.
    8. Xinyao Li & Lingzhi Wang & Bryan Pijanowski & Lingpeng Pan & Hichem Omrani & Anqi Liang & Yi Qu, 2022. "The Spatio-Temporal Pattern and Transition Mode of Recessive Cultivated Land Use Morphology in the Huaibei Region of the Jiangsu Province," Land, MDPI, vol. 11(11), pages 1-16, November.
    9. Jia Gao & Ge Song & Shuhan Liu, 2022. "Factors influencing farmers’ willingness and behavior choices to withdraw from rural homesteads in China," Growth and Change, Wiley Blackwell, vol. 53(1), pages 112-131, March.
    10. Wu, Haitao & Hao, Yu & Weng, Jia-Hsi, 2019. "How does energy consumption affect China's urbanization? New evidence from dynamic threshold panel models," Energy Policy, Elsevier, vol. 127(C), pages 24-38.
    11. Xiao Lu & Yi Qu & Piling Sun & Wei Yu & Wenlong Peng, 2020. "Green Transition of Cultivated Land Use in the Yellow River Basin: A Perspective of Green Utilization Efficiency Evaluation," Land, MDPI, vol. 9(12), pages 1-22, November.
    12. Wu, Xiaoran & Zhao, Na & Wang, Yuwei & Zhang, Liqiang & Wang, Wei & Liu, Yansui, 2024. "Cropland non-agriculturalization caused by the expansion of built-up areas in China during 1990–2020," Land Use Policy, Elsevier, vol. 146(C).
    13. Xiuyu Huang & Ying Wang & Wanyi Liang & Zhaojun Wang & Xiao Zhou & Qinqiang Yan, 2023. "Spatial–Temporal Evolution and Driving Factors of the Low–Carbon Transition of Farmland Use in Coastal Areas of Guangdong Province," Land, MDPI, vol. 12(5), pages 1-23, May.
    14. Yanbo Qu & Meijing Wu & Lingyun Zhan & Ran Shang, 2023. "Multifunctional Evolution and Allocation Optimization of Rural Residential Land in China," Land, MDPI, vol. 12(2), pages 1-23, January.
    15. Liao, Liuwen & Long, Hualou & Gao, Xiaolu & Ma, Enpu, 2019. "Effects of land use transitions and rural aging on agricultural production in China’s farming area: A perspective from changing labor employing quantity in the planting industry," Land Use Policy, Elsevier, vol. 88(C).
    16. Huanxin Yang & Kai Huang & Xin Deng & Dingde Xu, 2021. "Livelihood Capital and Land Transfer of Different Types of Farmers: Evidence from Panel Data in Sichuan Province, China," Land, MDPI, vol. 10(5), pages 1-21, May.
    17. Huang, Yihang & Liu, Zhengjia, 2024. "Improving Northeast China’s soybean and maize planting structure through subsidy optimization considering climate change and comparative economic benefit," Land Use Policy, Elsevier, vol. 146(C).
    18. Liu, Shuchang & Xiao, Wu & Ye, Yanmei & He, Tingting & Luo, Heng, 2023. "Rural residential land expansion and its impacts on cultivated land in China between 1990 and 2020," Land Use Policy, Elsevier, vol. 132(C).
    19. Ma, Li & Long, Hualou & Tu, Shuangshuang & Zhang, Yingnan & Zheng, Yuhan, 2020. "Farmland transition in China and its policy implications," Land Use Policy, Elsevier, vol. 92(C).
    20. Junyu Ding & Yongping Bai & Xuedi Yang & Zuqiao Gao, 2022. "Spatiotemporal Evolution of Water Resource Utilization and Economic Development in the Arid Region of China: A “Matching-Constraint” Perspective," Sustainability, MDPI, vol. 14(14), pages 1-19, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:10:y:2021:i:8:p:812-:d:606897. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.