IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i11p6873-d831733.html
   My bibliography  Save this article

Are There Conflicts among Energy Security, Energy Equity and Environmental Sustainability in China’s Provinces?

Author

Listed:
  • Yijian Ge

    (KPMG Huazhen Certified Public Accountants, Beijing 100738, China)

  • Lin Liu

    (School of Economics and Management, Taiyuan University of Technology, Taiyuan 030024, China)

  • Xilong Yao

    (School of Economics and Management, Taiyuan University of Technology, Taiyuan 030024, China)

  • Mohammad Aman Honardost

    (School of Economics and Management, Taiyuan University of Technology, Taiyuan 030024, China)

  • Ujunwa Angela Nwigwe

    (School of Economics and Management, Taiyuan University of Technology, Taiyuan 030024, China)

Abstract

In the process of achieving carbon-peaking and carbon-neutrality goals, conflict situations often arise from advancing energy equity, energy security, and environmental sustainability. Taking China as a case study, we developed an assessment model for conflict levels of energy security, energy equity, and environmental sustainability, based on an evaluation method for the degree of synergy in composite systems, and measured and analyzed the conflict levels of these three dimensions in 2010 and 2017. According to the results, China’s overall energy security and energy equity are in a state of conflict. While the level of conflict has eased, the conflict between China’s provincial energy security and energy equity is relatively large and more serious in certain provinces, including Shanxi, Heilongjiang, Fujian, Jiangxi, Hubei, Hunan, Chongqing, and Guizhou. Concerning the relationship between energy security and environmental sustainability and between energy equity and environmental sustainability, China as a whole has moved out of a state of conflict, but significant differences exist among different provinces. This paper reveals the relationship between energy security, energy equity, and environmental sustainability in China’s energy transition and provides support for the just energy transition of this country.

Suggested Citation

  • Yijian Ge & Lin Liu & Xilong Yao & Mohammad Aman Honardost & Ujunwa Angela Nwigwe, 2022. "Are There Conflicts among Energy Security, Energy Equity and Environmental Sustainability in China’s Provinces?," Sustainability, MDPI, vol. 14(11), pages 1-17, June.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:11:p:6873-:d:831733
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/11/6873/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/11/6873/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jae Edmonds & Tom Wilson & Marshall Wise & John Weyant, 2006. "Electrification of the economy and CO 2 emissions mitigation," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 7(3), pages 175-203, September.
    2. Li, Jinchao & Wang, Lina & Lin, Xiaoshan & Qu, Shen, 2020. "Analysis of China’s energy security evaluation system: Based on the energy security data from 30 provinces from 2010 to 2016," Energy, Elsevier, vol. 198(C).
    3. Maza, Adolfo & Villaverde, José, 2008. "The world per capita electricity consumption distribution: Signs of convergence?," Energy Policy, Elsevier, vol. 36(11), pages 4255-4261, November.
    4. Esen, Vedat & Oral, Bulent, 2016. "Natural gas reserve/production ratio in Russia, Iran, Qatar and Turkmenistan: A political and economic perspective," Energy Policy, Elsevier, vol. 93(C), pages 101-109.
    5. Karekezi, Stephen, 2002. "Poverty and energy in Africa--A brief review," Energy Policy, Elsevier, vol. 30(11-12), pages 915-919, September.
    6. López-González, A. & Ferrer-Martí, L. & Domenech, B., 2019. "Sustainable rural electrification planning in developing countries: A proposal for electrification of isolated communities of Venezuela," Energy Policy, Elsevier, vol. 129(C), pages 327-338.
    7. Holley, Cameron & Lecavalier, Emma, 2017. "Energy governance, energy security and environmental sustainability: A case study from Hong Kong," Energy Policy, Elsevier, vol. 108(C), pages 379-389.
    8. Resch, Gustav & Held, Anne & Faber, Thomas & Panzer, Christian & Toro, Felipe & Haas, Reinhard, 2008. "Potentials and prospects for renewable energies at global scale," Energy Policy, Elsevier, vol. 36(11), pages 4048-4056, November.
    9. Matsumoto, Ken’ichi & Shiraki, Hiroto, 2018. "Energy security performance in Japan under different socioeconomic and energy conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 391-401.
    10. Erik Paul Johnson and Matthew E. Oliver, 2019. "Renewable Generation Capacity and Wholesale Electricity Price Variance," The Energy Journal, International Association for Energy Economics, vol. 0(Number 5).
    11. Giannini Pereira, Marcio & Vasconcelos Freitas, Marcos Aurélio & da Silva, Neilton Fidelis, 2011. "The challenge of energy poverty: Brazilian case study," Energy Policy, Elsevier, vol. 39(1), pages 167-175, January.
    12. Li, Yingzhu & Shi, Xunpeng & Yao, Lixia, 2016. "Evaluating energy security of resource-poor economies: A modified principle component analysis approach," Energy Economics, Elsevier, vol. 58(C), pages 211-221.
    13. Berjawi, A.E.H. & Walker, S.L. & Patsios, C. & Hosseini, S.H.R., 2021. "An evaluation framework for future integrated energy systems: A whole energy systems approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zijie Yang & Dong Huang & Yanzhen Wang, 2023. "Measuring the Bilateral Energy Security Cooperation Sustainability between China and Its Neighboring Countries Based on the National Energy Security Level," Sustainability, MDPI, vol. 15(2), pages 1-25, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pin Li & Jinsuo Zhang, 2019. "Is China’s Energy Supply Sustainable? New Research Model Based on the Exponential Smoothing and GM(1,1) Methods," Energies, MDPI, vol. 12(2), pages 1-30, January.
    2. Zhang, Mingming & Zhou, Simei & Wang, Qunwei & Liu, Liyun & Zhou, Dequn, 2023. "Will the carbon neutrality target impact China's energy security? A dynamic Bayesian network model," Energy Economics, Elsevier, vol. 125(C).
    3. Honorata Nyga-Łukaszewska & Kentaka Aruga & Katarzyna Stala-Szlugaj, 2020. "Energy Security of Poland and Coal Supply: Price Analysis," Sustainability, MDPI, vol. 12(6), pages 1-18, March.
    4. Lee, Chien-Chiang & Xing, Wenwu & Lee, Chi-Chuan, 2022. "The impact of energy security on income inequality: The key role of economic development," Energy, Elsevier, vol. 248(C).
    5. Zhu, Bo & Deng, Yuanyue & Lin, Renda & Hu, Xin & Chen, Pingshe, 2022. "Energy security: Does systemic risk spillover matter? Evidence from China," Energy Economics, Elsevier, vol. 114(C).
    6. Herie Park & Sungwoo Bae, 2021. "Quantitative Assessment of Energy Supply Security: Korea Case Study," Sustainability, MDPI, vol. 13(4), pages 1-15, February.
    7. Coutinho, Gabriel Leuzinger & Vianna, João Nildo & Dias, Maria Amélia, 2020. "Alternatives for improving energy security in Cape Verde," Utilities Policy, Elsevier, vol. 67(C).
    8. Wang, Kai-Hua & Su, Chi-Wei & Umar, Muhammad, 2021. "Geopolitical risk and crude oil security: A Chinese perspective," Energy, Elsevier, vol. 219(C).
    9. Wang, Deqing & Tian, Sihua & Fang, Lei & Xu, Yan, 2020. "A functional index model for dynamically evaluating China's energy security," Energy Policy, Elsevier, vol. 147(C).
    10. Xue, Liming & Li, Huaqing & Shen, Wenlong & Zhao, Xiangyi & Liu, Zhe & Zheng, Zhixue & Hu, Jie & Meng, Shuo, 2023. "Applying GeoDetector to disentangle the contributions of the 4-As evaluation indicators to the spatial differentiation of coal resource security," Energy Policy, Elsevier, vol. 173(C).
    11. Agnieszka Operacz, 2021. "Possibility of Hydropower Development: A Simple-to-Use Index," Energies, MDPI, vol. 14(10), pages 1-19, May.
    12. Mishra, Vinod & Smyth, Russell, 2014. "Convergence in energy consumption per capita among ASEAN countries," Energy Policy, Elsevier, vol. 73(C), pages 180-185.
    13. Mohajan, Haradhan, 2021. "Cradle to Cradle is a Sustainable Economic Policy for the Better Future," MPRA Paper 111334, University Library of Munich, Germany, revised 10 Oct 2021.
    14. Bezerra, Paula & Cruz, Talita & Mazzone, Antonella & Lucena, André F.P. & De Cian, Enrica & Schaeffer, Roberto, 2022. "The multidimensionality of energy poverty in Brazil: A historical analysis," Energy Policy, Elsevier, vol. 171(C).
    15. Nyga-Łukaszewska Honorata & Napiórkowski Tomasz M., 2023. "Energy security as a source of international competitiveness in new EU member states," International Journal of Management and Economics, Warsaw School of Economics, Collegium of World Economy, vol. 59(3), pages 209-224, September.
    16. Scholz, Marco & Melin, Thomas & Wessling, Matthias, 2013. "Transforming biogas into biomethane using membrane technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 17(C), pages 199-212.
    17. Yuichiro Yoshida & Han Soo Lee & Bui Huy Trung & Hoang-Dung Tran & Mahrjan Keshlav Lall & Kifayatullah Kakar & Tran Dang Xuan, 2020. "Impacts of Mainstream Hydropower Dams on Fisheries and Agriculture in Lower Mekong Basin," Sustainability, MDPI, vol. 12(6), pages 1-21, March.
    18. Li, Yating & Fei, Yinxin & Zhang, Xiao-Bing & Qin, Ping, 2019. "Household appliance ownership and income inequality: Evidence from micro data in China," China Economic Review, Elsevier, vol. 56(C), pages 1-1.
    19. Malerba, Daniele, 2020. "Poverty alleviation and local environmental degradation: An empirical analysis in Colombia," World Development, Elsevier, vol. 127(C).
    20. Mahtta, Richa & Joshi, P.K. & Jindal, Alok Kumar, 2014. "Solar power potential mapping in India using remote sensing inputs and environmental parameters," Renewable Energy, Elsevier, vol. 71(C), pages 255-262.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:11:p:6873-:d:831733. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.