IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i10p6154-d818787.html
   My bibliography  Save this article

A Validated Model, Scalability, and Plant Growth Results for an Agrivoltaic Greenhouse

Author

Listed:
  • Michael E. Evans

    (Department of Mechanical Engineering, Villanova University, Villanova, PA 19085, USA)

  • J. Adam Langley

    (Department of Biology, Center for Biodiversity and Ecosystem Stewardship, Villanova University, Villanova, PA 19085, USA)

  • Finley R. Shapiro

    (Department of Engineering Leadership and Society, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, USA)

  • Gerard F. Jones

    (Department of Mechanical Engineering, Villanova University, Villanova, PA 19085, USA)

Abstract

We developed an agrivoltaic greenhouse (a ‘test cell’) that partially trapped waste heat from two photovoltaic (PV) panels. These panels served as parts of the roof of the enclosure to extend the growing season. Relative humidity, internal air temperature, incident solar radiation, wind speed, and wind direction were measured for one year. A locally 1-D transient heat and moisture transport model, as well as a shadowing model, was developed and validated with experimental data. The models were used to investigate the effects of altering various parameters of the greenhouse in a scalability study. The design kept test cell air temperatures generally above ambient throughout the year, with the test cell temperature below freezing for 36% less of the year than ambient. Plant growth experiments showed that kale, Brassica oleraceae , a shade-tolerant plant, can be grown within the test cell throughout the winter. The simulations showed that enlarging the greenhouse will increase cell air temperatures but that powering an electric load from the PV panels will reduce cell air temperatures.

Suggested Citation

  • Michael E. Evans & J. Adam Langley & Finley R. Shapiro & Gerard F. Jones, 2022. "A Validated Model, Scalability, and Plant Growth Results for an Agrivoltaic Greenhouse," Sustainability, MDPI, vol. 14(10), pages 1-34, May.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:10:p:6154-:d:818787
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/10/6154/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/10/6154/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Abdel-Ghany, A.M. & Al-Helal, I.M., 2011. "Solar energy utilization by a greenhouse: General relations," Renewable Energy, Elsevier, vol. 36(1), pages 189-196.
    2. Cossu, Marco & Murgia, Lelia & Ledda, Luigi & Deligios, Paola A. & Sirigu, Antonella & Chessa, Francesco & Pazzona, Antonio, 2014. "Solar radiation distribution inside a greenhouse with south-oriented photovoltaic roofs and effects on crop productivity," Applied Energy, Elsevier, vol. 133(C), pages 89-100.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Varo-Martínez, M. & Fernández-Ahumada, L.M. & Ramírez-Faz, J.C. & Ruiz-Jiménez, R. & López-Luque, R., 2024. "Methodology for the estimation of cultivable space in photovoltaic installations with dual-axis trackers for their reconversion to agrivoltaic plants," Applied Energy, Elsevier, vol. 361(C).
    2. Aidana Chalgynbayeva & Zoltán Gabnai & Péter Lengyel & Albiona Pestisha & Attila Bai, 2023. "Worldwide Research Trends in Agrivoltaic Systems—A Bibliometric Review," Energies, MDPI, vol. 16(2), pages 1-25, January.
    3. Widmer, J. & Christ, B. & Grenz, J. & Norgrove, L., 2024. "Agrivoltaics, a promising new tool for electricity and food production: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    4. Zainali, Sebastian & Lu, Silvia Ma & Fernández-Solas, Álvaro & Cruz-Escabias, Alejandro & Fernández, Eduardo F. & Zidane, Tekai Eddine Khalil & Honningdalsnes, Erlend Hustad & Nygård, Magnus Moe & Lel, 2025. "Modelling, simulation, and optimisation of agrivoltaic systems: a comprehensive review," Applied Energy, Elsevier, vol. 386(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hassanien, Reda Hassanien Emam & Li, Ming & Dong Lin, Wei, 2016. "Advanced applications of solar energy in agricultural greenhouses," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 989-1001.
    2. Raúl Aroca-Delgado & José Pérez-Alonso & Ángel Jesús Callejón-Ferre & Borja Velázquez-Martí, 2018. "Compatibility between Crops and Solar Panels: An Overview from Shading Systems," Sustainability, MDPI, vol. 10(3), pages 1-19, March.
    3. Marucci, Alvaro & Cappuccini, Andrea, 2016. "Dynamic photovoltaic greenhouse: Energy balance in completely clear sky condition during the hot period," Energy, Elsevier, vol. 102(C), pages 302-312.
    4. Xue, Jinlin, 2017. "Photovoltaic agriculture - New opportunity for photovoltaic applications in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1-9.
    5. Lingjun Wang & Jian Chen, 2024. "Economic and Social Benefits of Aquavoltaics: A Case Study from Jiangsu, China," Sustainability, MDPI, vol. 16(20), pages 1-17, October.
    6. Xiaodan Zhang & Jian Lv & Jianming Xie & Jihua Yu & Jing Zhang & Chaonan Tang & Jing Li & Zhixue He & Cheng Wang, 2020. "Solar Radiation Allocation and Spatial Distribution in Chinese Solar Greenhouses: Model Development and Application," Energies, MDPI, vol. 13(5), pages 1-27, March.
    7. Gorjian, Shiva & Bousi, Erion & Özdemir, Özal Emre & Trommsdorff, Max & Kumar, Nallapaneni Manoj & Anand, Abhishek & Kant, Karunesh & Chopra, Shauhrat S., 2022. "Progress and challenges of crop production and electricity generation in agrivoltaic systems using semi-transparent photovoltaic technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    8. Ghasemi Mobtaker, Hassan & Ajabshirchi, Yahya & Ranjbar, Seyed Faramarz & Matloobi, Mansour, 2016. "Solar energy conservation in greenhouse: Thermal analysis and experimental validation," Renewable Energy, Elsevier, vol. 96(PA), pages 509-519.
    9. La Notte, Luca & Giordano, Lorena & Calabrò, Emanuele & Bedini, Roberto & Colla, Giuseppe & Puglisi, Giovanni & Reale, Andrea, 2020. "Hybrid and organic photovoltaics for greenhouse applications," Applied Energy, Elsevier, vol. 278(C).
    10. Dimitris A. Chalkias & Christos Charalampopoulos & Stefania Aivali & Aikaterini K. Andreopoulou & Aggeliki Karavioti & Elias Stathatos, 2021. "A Di-Carbazole-Based Dye as a Potential Sensitizer for Greenhouse-Integrated Dye-Sensitized Solar Cells," Energies, MDPI, vol. 14(4), pages 1-15, February.
    11. Marucci, Alvaro & Cappuccini, Andrea, 2016. "Dynamic photovoltaic greenhouse: Energy efficiency in clear sky conditions," Applied Energy, Elsevier, vol. 170(C), pages 362-376.
    12. Anifantis, Alexandros Sotirios & Colantoni, Andrea & Pascuzzi, Simone, 2017. "Thermal energy assessment of a small scale photovoltaic, hydrogen and geothermal stand-alone system for greenhouse heating," Renewable Energy, Elsevier, vol. 103(C), pages 115-127.
    13. Uk-Hyeon Yeo & Sang-Yeon Lee & Se-Jun Park & Jun-Gyu Kim & Young-Bae Choi & Rack-Woo Kim & Jong Hwa Shin & In-Bok Lee, 2022. "Rooftop Greenhouse: (1) Design and Validation of a BES Model for a Plastic-Covered Greenhouse Considering the Tomato Crop Model and Natural Ventilation Characteristics," Agriculture, MDPI, vol. 12(7), pages 1-25, June.
    14. Dinesh, Harshavardhan & Pearce, Joshua M., 2016. "The potential of agrivoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 299-308.
    15. Seven Ağır & Pınar Derin Güre & Bilge Şentürk, 2023. "AgroPV’s Potential Opportunities and Challenges In A Mediterranean Developing Country Setting: A Farmer’s Perspectivetolia," ERC Working Papers 2301, ERC - Economic Research Center, Middle East Technical University, revised Feb 2023.
    16. Yao, Haoyi & Liang, Jingkang & Wang, Yunfeng & Li, Ming & Fan, Fangling & Ma, Xun & Xiao, Xin, 2025. "The influence of photovoltaic modules on the greenhouse micro-environment - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 210(C).
    17. Yusra Hasan & William David Lubitz, 2024. "A Sustainable Agri-Photovoltaic Greenhouse for Lettuce Production in Qatar," Energies, MDPI, vol. 17(19), pages 1-22, October.
    18. Li, Bo & Shi, Bijiao & Yao, Zhenzhu & Kumar Shukla, Manoj & Du, Taisheng, 2020. "Energy partitioning and microclimate of solar greenhouse under drip and furrow irrigation systems," Agricultural Water Management, Elsevier, vol. 234(C).
    19. Andrea Colantoni & Danilo Monarca & Alvaro Marucci & Massimo Cecchini & Ilaria Zambon & Federico Di Battista & Diego Maccario & Maria Grazia Saporito & Margherita Beruto, 2018. "Solar Radiation Distribution inside a Greenhouse Prototypal with Photovoltaic Mobile Plant and Effects on Flower Growth," Sustainability, MDPI, vol. 10(3), pages 1-17, March.
    20. Xiaolei Wang & Zihan Zhao & Ximou Han & Jinliang Liu & Jessica Kitch & Yongmei Liu & Hao Yang, 2022. "Evaluating the Evolution of Soil Erosion under Catchment Farmland Abandonment Using Lakeshore Sediment," Sustainability, MDPI, vol. 14(19), pages 1-21, September.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:10:p:6154-:d:818787. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.