IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i8p4396-d536408.html
   My bibliography  Save this article

Compaction Procedures and Associated Environmental Impacts Analysis for Application of Steel Slag in Road Base Layer

Author

Listed:
  • Bo Gao

    (State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China)

  • Chao Yang

    (State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China)

  • Yingxue Zou

    (State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China)

  • Fusong Wang

    (State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China)

  • Xiaojun Zhou

    (State Key Laboratory of High-Performance Civil Engineering Materials, Sobute New Materials Co., Ltd., Nanjing 211103, China)

  • Diego Maria Barbieri

    (Department of Civil and Environmental Engineering, Norwegian University of Science and Technology, 7491 Trondheim, Norway)

  • Shaopeng Wu

    (State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China)

Abstract

In recent years, recycling steel slag is receiving growing interest in the road base layer construction field due to its role in alleviating land occupation and resource shortages. However, the mixture compaction and its environmental impact on practical construction sites remain unclear, which may hinder the application of steel slags in road layers. This study investigates the pavement construction of the ‘Baotou-Maoming’ motorway, located in Inner Mongolia, China, analyzing the compaction procedures and assessing the environmental impacts caused by the road base layer containing steel slag. Firstly, mechanical properties and texture appearances of the steel slag aggregates are characterized. Afterwards, the comparative assessments for steel slag and andesite layers compaction are quantified from equivalent CO 2 emission and energy consumption aspects, respectively. The results show that the steel slag has a better surface texture than the natural aggregates; physical properties including compactness, flatness and compressive strength comply with the requirements for applying steel slag to a hydraulically bound mixture. Compared to the base layer using andesite aggregates, the compaction vibration period of the course containing steel slags should be reduced to achieve a proper density due to the “hard-to-hard” effect that occurs between the adjacent steel slag particles. Consequently, the additional energy and the equivalent CO 2 are generated at 2.67 MJ/m 3 and 0.20 kg/m 3 , respectively.

Suggested Citation

  • Bo Gao & Chao Yang & Yingxue Zou & Fusong Wang & Xiaojun Zhou & Diego Maria Barbieri & Shaopeng Wu, 2021. "Compaction Procedures and Associated Environmental Impacts Analysis for Application of Steel Slag in Road Base Layer," Sustainability, MDPI, vol. 13(8), pages 1-16, April.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:8:p:4396-:d:536408
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/8/4396/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/8/4396/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Vojtěch Václavík & Marcela Ondová & Tomáš Dvorský & Adriana Eštoková & Martina Fabiánová & Lukáš Gola, 2020. "Sustainability Potential Evaluation of Concrete with Steel Slag Aggregates by the LCA Method," Sustainability, MDPI, vol. 12(23), pages 1-20, November.
    2. Di Gao & Fu-Ping Wang & Yi-Tong Wang & Ya-Nan Zeng, 2020. "Sustainable Utilization of Steel Slag from Traditional Industry and Agriculture to Catalysis," Sustainability, MDPI, vol. 12(21), pages 1-9, November.
    3. William F. Laurance & Gopalasamy Reuben Clements & Sean Sloan & Christine S. O’Connell & Nathan D. Mueller & Miriam Goosem & Oscar Venter & David P. Edwards & Ben Phalan & Andrew Balmford & Rodney Van, 2014. "A global strategy for road building," Nature, Nature, vol. 513(7517), pages 229-232, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Felkner, John S. & Lee, Hyun & Shaikh, Sabina & Kolata, Alan & Binford, Michael, 2022. "The interrelated impacts of credit access, market access and forest proximity on livelihood strategies in Cambodia," World Development, Elsevier, vol. 155(C).
    2. Maja Radziemska & Justyna Dzięcioł & Zygmunt M. Gusiatin & Agnieszka Bęś & Wojciech Sas & Andrzej Głuchowski & Beata Gawryszewska & Zbigniew Mazur & Martin Brtnicky, 2021. "Recycling of Blast Furnace and Coal Slags in Aided Phytostabilisation of Soils Highly Polluted with Heavy Metals," Energies, MDPI, vol. 14(14), pages 1-11, July.
    3. Noah Kaiser & Christina K. Barstow, 2022. "Rural Transportation Infrastructure in Low- and Middle-Income Countries: A Review of Impacts, Implications, and Interventions," Sustainability, MDPI, vol. 14(4), pages 1-48, February.
    4. Andrzej Bochniak & Monika Stoma, 2021. "Estimating the Optimal Location for the Storage of Pellet Surplus," Energies, MDPI, vol. 14(20), pages 1-16, October.
    5. Wengang Li & Liping Ma & Shuyue Qiu & Xia Yin & Quxiu Dai & Wang Du, 2024. "Sustainable Utilization of Phosphogypsum in Multi-Solid Waste Recycled Aggregates: Environmental Impact and Economic Viability," Sustainability, MDPI, vol. 16(3), pages 1-18, January.
    6. Gajanayake Mudalige Pradeep Kumara & Ken Kawamoto, 2021. "Steel Slag and Autoclaved Aerated Concrete Grains as Low-Cost Adsorbents to Remove Cd 2+ and Pb 2+ in Wastewater: Effects of Mixing Proportions of Grains and Liquid-to-Solid Ratio," Sustainability, MDPI, vol. 13(18), pages 1-16, September.
    7. Coenen, Johanna & Newig, Jens & Meyfroidt, Patrick, 2022. "Environmental governance of a Belt and Road project in Montenegro – National agency and external influences," Land Use Policy, Elsevier, vol. 119(C).
    8. Davor Kvočka & Jakob Šušteršič & Alenka Mauko Pranjić & Ana Mladenović, 2022. "Mass Concrete with EAF Steel Slag Aggregate: Workability, Strength, Temperature Rise, and Environmental Performance," Sustainability, MDPI, vol. 14(23), pages 1-20, November.
    9. Konno, Akio & Kato, Hironori & Takeuchi, Wataru & Kiguchi, Riku, 2021. "Global evidence on productivity effects of road infrastructure incorporating spatial spillover effects," Transport Policy, Elsevier, vol. 103(C), pages 167-182.
    10. Dana-Adriana Iluţiu-Varvara & Claudiu Aciu, 2022. "Metallurgical Wastes as Resources for Sustainability of the Steel Industry," Sustainability, MDPI, vol. 14(9), pages 1-25, May.
    11. Keles, Derya & Delacote, Philippe & Pfaff, Alexander & Qin, Siyu & Mascia, Michael B., 2020. "What Drives the Erasure of Protected Areas? Evidence from across the Brazilian Amazon," Ecological Economics, Elsevier, vol. 176(C).
    12. Fatima Mustafa & Saadia Zia & Dr. Umbreen Khizar, 2021. "Impact of Environmental Concerns on Environmental Attitudes among University Employees," iRASD Journal of Economics, International Research Alliance for Sustainable Development (iRASD), vol. 3(3), pages 251-260, December.
    13. Ana C. Rorato & Michelle C. A. Picoli & Judith A. Verstegen & Gilberto Camara & Francisco Gilney Silva Bezerra & Maria Isabel S. Escada, 2021. "Environmental Threats over Amazonian Indigenous Lands," Land, MDPI, vol. 10(3), pages 1-28, March.
    14. Claudia N. Berg & Uwe Deichmann & Yishen Liu & Harris Selod, 2017. "Transport Policies and Development," Journal of Development Studies, Taylor & Francis Journals, vol. 53(4), pages 465-480, April.
    15. Pfaff, Alexander S. P. & Robalino, Juan & Reis, Eustaquio J. & Walker, Robert & Perz, Stephen & Laurance, William & Bohrer, Claudio & Aldrich, Steven & Arima, Eugenio & Caldas, Marcellus & Kirby, Kath, 2018. "Roads & SDGs, tradeoffs and synergies: Learning from Brazil's Amazon in distinguishing frontiers," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 12, pages 1-26.
    16. Nayak, Rajat & Karanth, Krithi K. & Dutta, Trishna & Defries, Ruth & Karanth, K. Ullas & Vaidyanathan, Srinivas, 2020. "Bits and pieces: Forest fragmentation by linear intrusions in India," Land Use Policy, Elsevier, vol. 99(C).
    17. Kaczan, David J., 2020. "Can roads contribute to forest transitions?," World Development, Elsevier, vol. 129(C).
    18. Weiping Wang & Saini Yang & Jianxi Gao & Fuyu Hu & Wanyi Zhao & H. Eugene Stanley, 2020. "An Integrated Approach for Assessing the Impact of Large‐Scale Future Floods on a Highway Transport System," Risk Analysis, John Wiley & Sons, vol. 40(9), pages 1780-1794, September.
    19. Sainchuluu Amarsanaa & Ariuntsetseg Lkhagva & Bolorchuluun Chogsom & Batbileg Bayaraa & Byambasuren Damdin & Bolormaa Tsooj & Javkhlan Nyamjav & Batkhishig Baival & Chantsallkham Jamsranjav, 2022. "Quantifying the Spatial Extent of Roads and Their Effects on the Vegetation in Mongolia’s Gobi Desert," Land, MDPI, vol. 11(6), pages 1-14, May.
    20. Luis R Carrasco & Edward L Webb & William S Symes & Lian P Koh & Navjot S Sodhi, 2017. "Global economic trade-offs between wild nature and tropical agriculture," PLOS Biology, Public Library of Science, vol. 15(7), pages 1-22, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:8:p:4396-:d:536408. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.