IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i8p4259-d534381.html
   My bibliography  Save this article

Modelling and Prediction of Water Quality by Using Artificial Intelligence

Author

Listed:
  • Mosleh Hmoud Al-Adhaileh

    (Deanship of E-Learning and Distance Education King Faisal University Saudi Arabia, Al-Ahsa P.O. Box 4000, Saudi Arabia)

  • Fawaz Waselallah Alsaade

    (College of Computer Science and Information Technology, King Faisal University, Al-Ahsa P.O. Box 4000, Saudi Arabia)

Abstract

Artificial intelligence methods can remarkably reduce costs for water supply and sanitation systems and help ensure compliance with the quality of drinking and wastewater treatment. Therefore, modelling and predicting water quality to control water pollution has been widely researched. The novelty of the proposed system is presented to develop an efficient operation of monitoring drinking water to ensure a sustainable and friendly green environment. In this work, the adaptive neuro-fuzzy inference system (ANFIS) algorithm was developed to predict the water quality index (WQI). Feed-forward neural network (FFNN) and K-nearest neighbors were applied to classify water quality. The dataset has eight significant parameters, but seven parameters were considered to show significant values. The proposed methodology was developed based on these statistical parameters. Prediction results demonstrated that the ANFIS model was superior for the prediction of WQI values. Nevertheless, the FFNN algorithm achieved the highest accuracy (100%) for water quality classification (WQC). Furthermore, the ANFIS model accurately predicted WQI, and the FFNN model showed superior robustness in classifying the WQC. In addition, the ANFIS model showed accuracy during the testing phase, with a regression coefficient of 96.17% for predicting WQI, and the FFNN model achieved the highest accuracy (100%) for WQC. This proposed method, using advanced artificial intelligence, can aid in water treatment and management.

Suggested Citation

  • Mosleh Hmoud Al-Adhaileh & Fawaz Waselallah Alsaade, 2021. "Modelling and Prediction of Water Quality by Using Artificial Intelligence," Sustainability, MDPI, vol. 13(8), pages 1-18, April.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:8:p:4259-:d:534381
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/8/4259/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/8/4259/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tawfiq Al-Mughanam & Theyazn H. H. Aldhyani & Belal Alsubari & Mohammed Al-Yaari, 2020. "Modeling of Compressive Strength of Sustainable Self-Compacting Concrete Incorporating Treated Palm Oil Fuel Ash Using Artificial Neural Network," Sustainability, MDPI, vol. 12(22), pages 1-13, November.
    2. Singh, Kunwar P. & Basant, Ankita & Malik, Amrita & Jain, Gunja, 2009. "Artificial neural network modeling of the river water quality—A case study," Ecological Modelling, Elsevier, vol. 220(6), pages 888-895.
    3. Ping Liu & Jin Wang & Arun Kumar Sangaiah & Yang Xie & Xinchun Yin, 2019. "Analysis and Prediction of Water Quality Using LSTM Deep Neural Networks in IoT Environment," Sustainability, MDPI, vol. 11(7), pages 1-14, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yi-Jen Mon, 2022. "Vision Robot Path Control Based on Artificial Intelligence Image Classification and Sustainable Ultrasonic Signal Transformation Technology," Sustainability, MDPI, vol. 14(9), pages 1-14, April.
    2. Paola Ortiz-Grisales & Julián Patiño-Murillo & Eduardo Duque-Grisales, 2021. "Comparative Study of Computational Models for Reducing Air Pollution through the Generation of Negative Ions," Sustainability, MDPI, vol. 13(13), pages 1-13, June.
    3. Monika Kulisz & Justyna Kujawska & Bartosz Przysucha & Wojciech Cel, 2021. "Forecasting Water Quality Index in Groundwater Using Artificial Neural Network," Energies, MDPI, vol. 14(18), pages 1-17, September.
    4. Seoro Lee & Jonggun Kim & Gwanjae Lee & Jiyeong Hong & Joo Hyun Bae & Kyoung Jae Lim, 2021. "Prediction of Aquatic Ecosystem Health Indices through Machine Learning Models Using the WGAN-Based Data Augmentation Method," Sustainability, MDPI, vol. 13(18), pages 1-20, September.
    5. Rana Muhammad Adnan & Hong-Liang Dai & Reham R. Mostafa & Kulwinder Singh Parmar & Salim Heddam & Ozgur Kisi, 2022. "Modeling Multistep Ahead Dissolved Oxygen Concentration Using Improved Support Vector Machines by a Hybrid Metaheuristic Algorithm," Sustainability, MDPI, vol. 14(6), pages 1-23, March.
    6. Wahid Ali Hamood Altowayti & Shafinaz Shahir & Taiseer Abdalla Elfadil Eisa & Maged Nasser & Muhammad Imran Babar & Abdullah Faisal Alshalif & Faris Ali Hamood AL-Towayti, 2022. "Smart Modelling of a Sustainable Biological Wastewater Treatment Technologies: A Critical Review," Sustainability, MDPI, vol. 14(22), pages 1-32, November.
    7. André Felipe Henriques Librantz & Fábio Cosme Rodrigues dos Santos, 2023. "Intelligent Clustering Techniques for the Reduction of Chemicals in Water Treatment Plants," Sustainability, MDPI, vol. 15(8), pages 1-18, April.
    8. Yas Barzegar & Irina Gorelova & Francesco Bellini & Fabrizio D’Ascenzo, 2023. "Drinking Water Quality Assessment Using a Fuzzy Inference System Method: A Case Study of Rome (Italy)," IJERPH, MDPI, vol. 20(15), pages 1-20, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kagiso Samuel More & Christian Wolkersdorfer, 2022. "Predicting and Forecasting Mine Water Parameters Using a Hybrid Intelligent System," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(8), pages 2813-2826, June.
    2. Emerson Felipe Felix & Edna Possan & Rogério Carrazedo, 2021. "A New Formulation to Estimate the Elastic Modulus of Recycled Concrete Based on Regression and ANN," Sustainability, MDPI, vol. 13(15), pages 1-21, July.
    3. Vlontzos, G. & Pardalos, P.M., 2017. "Assess and prognosticate green house gas emissions from agricultural production of EU countries, by implementing, DEA Window analysis and artificial neural networks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 155-162.
    4. Allison Lassiter & Nicole Leonard, 2022. "A systematic review of municipal smart water for climate adaptation and mitigation," Environment and Planning B, , vol. 49(5), pages 1406-1430, June.
    5. Sayiter Yıldız & Can Bülent Karakuş, 2020. "Estimation of irrigation water quality index with development of an optimum model: a case study," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(5), pages 4771-4786, June.
    6. Francis Rathinam & Sayak Khatua & Zeba Siddiqui & Manya Malik & Pallavi Duggal & Samantha Watson & Xavier Vollenweider, 2021. "Using big data for evaluating development outcomes: A systematic map," Campbell Systematic Reviews, John Wiley & Sons, vol. 17(3), September.
    7. Eric Hitimana & Gaurav Bajpai & Richard Musabe & Louis Sibomana & Jayavel Kayalvizhi, 2021. "Implementation of IoT Framework with Data Analysis Using Deep Learning Methods for Occupancy Prediction in a Building," Future Internet, MDPI, vol. 13(3), pages 1-19, March.
    8. Mohammed A. Mansour & Mohd Hanif Bin Ismail & Qadir Bux alias Imran Latif & Abdullah Faisal Alshalif & Abdalrhman Milad & Walid Abdullah Al Bargi, 2023. "A Systematic Review of the Concrete Durability Incorporating Recycled Glass," Sustainability, MDPI, vol. 15(4), pages 1-33, February.
    9. Heelak Choi & Sang-Ik Suh & Su-Hee Kim & Eun Jin Han & Seo Jin Ki, 2021. "Assessing the Performance of Deep Learning Algorithms for Short-Term Surface Water Quality Prediction," Sustainability, MDPI, vol. 13(19), pages 1-11, September.
    10. Elham Alzain & Shaha Al-Otaibi & Theyazn H. H. Aldhyani & Ali Saleh Alshebami & Mohammed Amin Almaiah & Mukti E. Jadhav, 2023. "Revolutionizing Solar Power Production with Artificial Intelligence: A Sustainable Predictive Model," Sustainability, MDPI, vol. 15(10), pages 1-21, May.
    11. Mehmet Kayakuş, 2020. "The Estimation of Turkey's Energy Demand Through Artificial Neural Networks and Support Vector Regression Methods," Alphanumeric Journal, Bahadir Fatih Yildirim, vol. 8(2), pages 227-236, December.
    12. Xiaonan Ji & Jianghai Chen & Yali Guo, 2022. "A Multi-Dimensional Investigation on Water Quality of Urban Rivers with Emphasis on Implications for the Optimization of Monitoring Strategy," Sustainability, MDPI, vol. 14(7), pages 1-18, March.
    13. Işık, Erdem & Inallı, Mustafa, 2018. "Artificial neural networks and adaptive neuro-fuzzy inference systems approaches to forecast the meteorological data for HVAC: The case of cities for Turkey," Energy, Elsevier, vol. 154(C), pages 7-16.
    14. Kichul Jung & Deg-Hyo Bae & Myoung-Jin Um & Siyeon Kim & Seol Jeon & Daeryong Park, 2020. "Evaluation of Nitrate Load Estimations Using Neural Networks and Canonical Correlation Analysis with K-Fold Cross-Validation," Sustainability, MDPI, vol. 12(1), pages 1-17, January.
    15. Mohammad Rezaie-Balf & Zahra Zahmatkesh & Sungwon Kim, 2017. "Soft Computing Techniques for Rainfall-Runoff Simulation: Local Non–Parametric Paradigm vs. Model Classification Methods," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(12), pages 3843-3865, September.
    16. Docheshmeh Gorgij, A. & Askari, Gh & Taghipour, A.A. & Jami, M. & Mirfardi, M., 2023. "Spatiotemporal Forecasting of the Groundwater Quality for Irrigation Purposes, Using Deep Learning Method: Long Short-Term Memory (LSTM)," Agricultural Water Management, Elsevier, vol. 277(C).
    17. Yumin Wang & Weijian Ran & Lei Wu & Yifeng Wu, 2019. "Assessment of River Water Quality Based on an Improved Fuzzy Matter-Element Model," IJERPH, MDPI, vol. 16(15), pages 1-11, August.
    18. Fazal Hussain & Shayan Ali Khan & Rao Arsalan Khushnood & Ameer Hamza & Fazal Rehman, 2022. "Machine Learning-Based Predictive Modeling of Sustainable Lightweight Aggregate Concrete," Sustainability, MDPI, vol. 15(1), pages 1-22, December.
    19. Thiago Victor Medeiros Nascimento & Celso Augusto Guimarães Santos & Camilo Allyson Simões Farias & Richarde Marques Silva, 2022. "Monthly Streamflow Modeling Based on Self-Organizing Maps and Satellite-Estimated Rainfall Data," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(7), pages 2359-2377, May.
    20. Wessam El-Ssawy & Hosam Elhegazy & Heba Abd-Elrahman & Mohamed Eid & Niveen Badra, 2023. "Identification of the best model to predict optical properties of water," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(7), pages 6781-6797, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:8:p:4259-:d:534381. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.