IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i21p11984-d668005.html
   My bibliography  Save this article

Applicable Smart City Strategies to Ensure Energy Efficiency and Renewable Energy Integration in Poor Cities: Kabul Case Study

Author

Listed:
  • Najib Rahman Sabory

    (Department of Energy Engineering, Faculty of Engineering, Kabul University, Kabul 1004, Afghanistan
    Department of Electrical and Electronics Engineering, Faculty of Engineering, University of the Ryukyus, Okinawa 903-0213, Japan)

  • Tomonobu Senjyu

    (Department of Electrical and Electronics Engineering, Faculty of Engineering, University of the Ryukyus, Okinawa 903-0213, Japan)

  • Mir Sayed Shah Danish

    (Department of Energy Engineering, Faculty of Engineering, Kabul University, Kabul 1004, Afghanistan
    Department of Electrical and Electronics Engineering, Faculty of Engineering, University of the Ryukyus, Okinawa 903-0213, Japan)

  • Ayaz Hosham

    (Department of Architecture, Faculty of Engineering, Kabul University, Kabul 1004, Afghanistan)

  • Ajmal Noorzada

    (Department of Architecture, Faculty of Engineering, Kabul University, Kabul 1004, Afghanistan)

  • Ahmad Shahpoor Amiri

    (Department of Architecture, Faculty of Engineering, Kabul University, Kabul 1004, Afghanistan)

  • Zabihullah Muhammdi

    (Department of Architecture, Faculty of Engineering, Kabul University, Kabul 1004, Afghanistan)

Abstract

A smart city is fundamentally intended to reduce the consumption of resources and optimize efficiencies. In almost any area, efficiency results in energy saving, reduced energy intensity, sustainable economic development, enhanced productivity, a protected environment, and most importantly, cooperation with the climate change battle. Although budget, technology, and the required infrastructure are major constraints for poor cities to achieve smart and sustainable city goals, the benefits of smart cities are multiple for poor cities compared to developing and developed cities. Poor cities achieve improved living environments, security, safety, economic development, governance, and quality of life in addition to achieving sustainable energy goals, and this study seeks to identify those smart renewable energy and energy efficiency strategies that are economically feasible and technically applicable in poor cities. The findings of this research would help poor and low-income, developing cities take the initial steps towards becoming smart cities by applying smart, innovative, and economically feasible sustainable energy projects and initiatives. As a result, these cities will be able to enhance their environment, economy, and employment by transitioning to smart ones.

Suggested Citation

  • Najib Rahman Sabory & Tomonobu Senjyu & Mir Sayed Shah Danish & Ayaz Hosham & Ajmal Noorzada & Ahmad Shahpoor Amiri & Zabihullah Muhammdi, 2021. "Applicable Smart City Strategies to Ensure Energy Efficiency and Renewable Energy Integration in Poor Cities: Kabul Case Study," Sustainability, MDPI, vol. 13(21), pages 1-12, October.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:21:p:11984-:d:668005
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/21/11984/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/21/11984/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhou, Kaile & Fu, Chao & Yang, Shanlin, 2016. "Big data driven smart energy management: From big data to big insights," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 215-225.
    2. Brandoni, Caterina & Polonara, Fabio, 2012. "The role of municipal energy planning in the regional energy-planning process," Energy, Elsevier, vol. 48(1), pages 323-338.
    3. Rosario Ferrara, 2015. "The Smart City and the Green Economy in Europe: A Critical Approach," Energies, MDPI, vol. 8(6), pages 1-11, May.
    4. Haarstad, Håvard & Wathne, Marikken W., 2019. "Are smart city projects catalyzing urban energy sustainability?," Energy Policy, Elsevier, vol. 129(C), pages 918-925.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tatiana Tucunduva Philippi Cortese & Jairo Filho Sousa de Almeida & Giseli Quirino Batista & José Eduardo Storopoli & Aaron Liu & Tan Yigitcanlar, 2022. "Understanding Sustainable Energy in the Context of Smart Cities: A PRISMA Review," Energies, MDPI, vol. 15(7), pages 1-38, March.
    2. Vahid Javidroozi & Hanifa Shah & Gerald Feldman, 2022. "Facilitating Smart City Development through Adaption of the Learnings from Enterprise Systems Integration," Sustainability, MDPI, vol. 14(7), pages 1-16, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wei He & Wanqiang Li & Peidong Deng, 2022. "Legal Governance in the Smart Cities of China: Functions, Problems, and Solutions," Sustainability, MDPI, vol. 14(15), pages 1-24, August.
    2. Guariso, Giorgio & Sangiorgio, Matteo, 2019. "Multi-objective planning of building stock renovation," Energy Policy, Elsevier, vol. 130(C), pages 101-110.
    3. Jihoon Moon & Junhong Kim & Pilsung Kang & Eenjun Hwang, 2020. "Solving the Cold-Start Problem in Short-Term Load Forecasting Using Tree-Based Methods," Energies, MDPI, vol. 13(4), pages 1-37, February.
    4. Leslie Quitzow & Friederike Rohde, 2022. "Imagining the smart city through smart grids? Urban energy futures between technological experimentation and the imagined low-carbon city," Urban Studies, Urban Studies Journal Limited, vol. 59(2), pages 341-359, February.
    5. González-Limón, José Manuel & Pablo-Romero, María del P. & Sánchez-Braza, Antonio, 2013. "Understanding local adoption of tax credits to promote solar-thermal energy: Spanish municipalities' case," Energy, Elsevier, vol. 62(C), pages 277-284.
    6. Di Leo, Senatro & Salvia, Monica, 2017. "Local strategies and action plans towards resource efficiency in South East Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 286-305.
    7. Zhou, Kaile & Yang, Changhui & Shen, Jianxin, 2017. "Discovering residential electricity consumption patterns through smart-meter data mining: A case study from China," Utilities Policy, Elsevier, vol. 44(C), pages 73-84.
    8. Jia, Kunqi & Guo, Ge & Xiao, Jucheng & Zhou, Huan & Wang, Zhihua & He, Guangyu, 2019. "Data compression approach for the home energy management system," Applied Energy, Elsevier, vol. 247(C), pages 643-656.
    9. Fouladvand, Javanshir & Aranguren Rojas, Maria & Hoppe, Thomas & Ghorbani, Amineh, 2022. "Simulating thermal energy community formation: Institutional enablers outplaying technological choice," Applied Energy, Elsevier, vol. 306(PA).
    10. Haarstad, Håvard & Sareen, Siddharth & Kandt, Jens & Coenen, Lars & Cook, Matthew, 2022. "Beyond automobility? Lock-in of past failures in low-carbon urban mobility innovations," Energy Policy, Elsevier, vol. 166(C).
    11. Quitzow, Leslie & Rohde, Friederike, 2022. "Imagining the smart city through smart grids? Urban energy futures between technological experimentation and the imagined low-carbon city," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 59(2), pages 341-359.
    12. Amasyali, Kadir & El-Gohary, Nora M., 2018. "A review of data-driven building energy consumption prediction studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1192-1205.
    13. Juliane Große & Christian Fertner & Niels Boje Groth, 2016. "Urban Structure, Energy and Planning: Findings from Three Cities in Sweden, Finland and Estonia," Urban Planning, Cogitatio Press, vol. 1(1), pages 24-40.
    14. Čábelková, Inna & Strielkowski, Wadim & Streimikiene, Dalia & Cavallaro, Fausto & Streimikis, Justas, 2021. "The social acceptance of nuclear fusion for decision making towards carbon free circular economy: Evidence from Czech Republic," Technological Forecasting and Social Change, Elsevier, vol. 163(C).
    15. Hirsh Bar Gai, Dor & Shittu, Ekundayo & Attanasio, Donna & Weigelt, Carmen & LeBlanc, Saniya & Dehghanian, Payman & Sklar, Scott, 2021. "Examining community solar programs to understand accessibility and investment: Evidence from the U.S," Energy Policy, Elsevier, vol. 159(C).
    16. Sellak, Hamza & Ouhbi, Brahim & Frikh, Bouchra & Palomares, Iván, 2017. "Towards next-generation energy planning decision-making: An expert-based framework for intelligent decision support," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1544-1577.
    17. Stefano Villa & Claudio Sassanelli, 2020. "The Data-Driven Multi-Step Approach for Dynamic Estimation of Buildings’ Interior Temperature," Energies, MDPI, vol. 13(24), pages 1-23, December.
    18. Papa, Armando & Mital, Monika & Pisano, Paola & Del Giudice, Manlio, 2020. "E-health and wellbeing monitoring using smart healthcare devices: An empirical investigation," Technological Forecasting and Social Change, Elsevier, vol. 153(C).
    19. Attour, Amel & Baudino, Marco & Krafft, Jackie & Lazaric, Nathalie, 2020. "Determinants of energy tracking application use at the city level: Evidence from France," Energy Policy, Elsevier, vol. 147(C).
    20. Seung-Mo Je & Hyeyoung Ko & Jun-Ho Huh, 2021. "Accurate Demand Forecasting: A Flexible and Balanced Electric Power Production Big Data Virtualization Based on Photovoltaic Power Plant," Energies, MDPI, vol. 14(21), pages 1-31, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:21:p:11984-:d:668005. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.