IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i20p11342-d655814.html
   My bibliography  Save this article

Measurement Quality Appraisal Instrument for Evaluation of Walkability Assessment Tools Based on Walking Needs

Author

Listed:
  • Sanaz Tabatabaee

    (Green Cities and Construction Research Group, Razak Faculty of Technology and Informatics, Universiti Teknologi Malaysia, Kuala Lumpur 54100, Malaysia)

  • Mahdi Aghaabbasi

    (Centre for Sustainable Urban Planning and Real Estate (SUPRE), Department of Urban and Regional Planning, Faculty of Built Environment, University of Malaya, Kuala Lumpur 50603, Malaysia)

  • Amir Mahdiyar

    (School of Housing, Building and Planning, Universiti Sains Malaysia, Penang 11800, Malaysia)

  • Rosilawati Zainol

    (Centre for Civilisational Dialogue, University of Malaya, Kuala Lumpur 50603, Malaysia)

  • Syuhaida Ismail

    (Green Cities and Construction Research Group, Razak Faculty of Technology and Informatics, Universiti Teknologi Malaysia, Kuala Lumpur 54100, Malaysia)

Abstract

Walking is a sustainable commute mode, and walkability is considered an essential sign of sustainable mobility. To date, many walkability assessment tools have been developed to assess the walkability conditions across the world. However, there is a paucity of comprehensive methods to assess current walkability tools based on walking needs and ensure all walking requirements are included. Thus, researchers and experts are unable to select the most comprehensive tool systematically. The present study attempts to develop a system to evaluate the quality of the existing tools. The instrument focuses on factors related to walking needs frequently observed in all types of walkability assessment tools. Hence, a pilot measurement quality appraisal instrument (MQAI) is developed and tested by a research team with planning and public health backgrounds. The final MQAI is tested by suitable reliability, criterion, and content validity tests. Most appraisal scales display moderate to high reliability for both audits and questionnaires. The MQAI appears as ready for use in several applications, including meta-analyses and systematic reviews. Additionally, the MQAI can be used by practitioners and planners to identify the most comprehensive and efficient assessment tools based on their needs.

Suggested Citation

  • Sanaz Tabatabaee & Mahdi Aghaabbasi & Amir Mahdiyar & Rosilawati Zainol & Syuhaida Ismail, 2021. "Measurement Quality Appraisal Instrument for Evaluation of Walkability Assessment Tools Based on Walking Needs," Sustainability, MDPI, vol. 13(20), pages 1-22, October.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:20:p:11342-:d:655814
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/20/11342/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/20/11342/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Saelens, B.E. & Sallis, J.F. & Black, J.B. & Chen, D., 2003. "Neighborhood-Based Differences in Physical Activity: An Environment Scale Evaluation," American Journal of Public Health, American Public Health Association, vol. 93(9), pages 1552-1558.
    2. Hyungkeun Kim & Kyungsoo Lee & Taeyeon Kim, 2018. "Investigation of Pedestrian Comfort with Wind Chill during Winter," Sustainability, MDPI, vol. 10(1), pages 1-13, January.
    3. Hatamzadeh, Yaser, 2021. "Working commuters’ tendency toward a travel pattern with potentially more walking: Examining the relative influence of personal and environmental measures," Research in Transportation Economics, Elsevier, vol. 86(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Panyu Tang & Mahdi Aghaabbasi & Mujahid Ali & Amin Jan & Abdeliazim Mustafa Mohamed & Abdullah Mohamed, 2022. "How Sustainable Is People’s Travel to Reach Public Transit Stations to Go to Work? A Machine Learning Approach to Reveal Complex Relationships," Sustainability, MDPI, vol. 14(7), pages 1-18, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anura Amarasinghe & Gerard D'Souza & Cheryl Brown & Tatiana Borisova, 2006. "A Spatial Analysis of Obesity in West Virginia," Working Papers Working Paper 2006-13, Regional Research Institute, West Virginia University.
    2. Spielman, Seth E. & Yoo, Eun-hye, 2009. "The spatial dimensions of neighborhood effects," Social Science & Medicine, Elsevier, vol. 68(6), pages 1098-1105, March.
    3. Kevin Credit & Elizabeth Mack, 2019. "Place-making and performance: The impact of walkable built environments on business performance in Phoenix and Boston," Environment and Planning B, , vol. 46(2), pages 264-285, February.
    4. Mi Namgung & B. Elizabeth Mercado Gonzalez & Seungwoo Park, 2019. "The Role of Built Environment on Health of Older Adults in Korea: Obesity and Gender Differences," IJERPH, MDPI, vol. 16(18), pages 1-13, September.
    5. Courtney Coughenour & Hanns de la Fuente-Mella & Alexander Paz, 2019. "Analysis of Self-Reported Walking for Transit in a Sprawling Urban Metropolitan Area in the Western U.S," Sustainability, MDPI, vol. 11(3), pages 1-16, February.
    6. Eric T. H. Chan & Tim Schwanen & David Banister, 2021. "The role of perceived environment, neighbourhood characteristics, and attitudes in walking behaviour: evidence from a rapidly developing city in China," Transportation, Springer, vol. 48(1), pages 431-454, February.
    7. McNeill, Lorna Haughton & Kreuter, Matthew W. & Subramanian, S.V., 2006. "Social Environment and Physical activity: A review of concepts and evidence," Social Science & Medicine, Elsevier, vol. 63(4), pages 1011-1022, August.
    8. Fernando Fonseca & Escolástica Fernandes & Rui Ramos, 2022. "Walkable Cities: Using the Smart Pedestrian Net Method for Evaluating a Pedestrian Network in Guimarães, Portugal," Sustainability, MDPI, vol. 14(16), pages 1-23, August.
    9. repec:rri:wpaper:200613 is not listed on IDEAS
    10. Kent, Jennifer L. & Mulley, Corinne & Stevens, Nick, 2020. "Challenging policies that prohibit public transport use: Travelling with pets as a case study," Transport Policy, Elsevier, vol. 99(C), pages 86-94.
    11. Victor O. Akande & Robert A.C. Ruiter & Stef P.J. Kremers, 2019. "Environmental and Motivational Determinants of Physical Activity among Canadian Inuit in the Arctic," IJERPH, MDPI, vol. 16(13), pages 1-14, July.
    12. Letizia Appolloni & Maria Vittoria Corazza & Daniela D’Alessandro, 2019. "The Pleasure of Walking: An Innovative Methodology to Assess Appropriate Walkable Performance in Urban Areas to Support Transport Planning," Sustainability, MDPI, vol. 11(12), pages 1-26, June.
    13. Jun-Hyun Kim & Chanam Lee & Wonmin Sohn, 2016. "Urban Natural Environments, Obesity, and Health-Related Quality of Life among Hispanic Children Living in Inner-City Neighborhoods," IJERPH, MDPI, vol. 13(1), pages 1-15, January.
    14. Park, Sungjin, 2008. "Defining, Measuring, and Evaluating Path Walkability, and Testing Its Impacts on Transit Users’ Mode Choice and Walking Distance to the Station," University of California Transportation Center, Working Papers qt0ct7c30p, University of California Transportation Center.
    15. Razieh Zandieh & Javier Martinez & Johannes Flacke & Phil Jones & Martin Van Maarseveen, 2016. "Older Adults’ Outdoor Walking: Inequalities in Neighbourhood Safety, Pedestrian Infrastructure and Aesthetics," IJERPH, MDPI, vol. 13(12), pages 1-24, November.
    16. Guillem Artigues & Sara Mateo & Maria Ramos & Elena Cabeza, 2020. "Validation of the Urban Walkability Perception Questionnaire (UWPQ) in the Balearic Islands," IJERPH, MDPI, vol. 17(18), pages 1-16, September.
    17. Zimu Jia & Long Chen & Jingjia Chen & Guowei Lyu & Ding Zhou & Ying Long, 2020. "Urban modeling for streets using vector cellular automata: Framework and its application in Beijing," Environment and Planning B, , vol. 47(8), pages 1418-1439, October.
    18. Mouhcine Guettabi & Abdul Munasib, 2014. "Urban Sprawl, Obesogenic Environment, And Child Weight," Journal of Regional Science, Wiley Blackwell, vol. 54(3), pages 378-401, June.
    19. Neatt, Kevin & Millward, Hugh & Spinney, Jamie, 2017. "Neighborhood walking densities: A multivariate analysis in Halifax, Canada," Journal of Transport Geography, Elsevier, vol. 61(C), pages 9-16.
    20. Deepti Adlakha & J. Aaron Hipp & James F. Sallis & Ross C. Brownson, 2018. "Exploring Neighborhood Environments and Active Commuting in Chennai, India," IJERPH, MDPI, vol. 15(9), pages 1-15, August.
    21. Lin Lin & Xueming (Jimmy) Chen & Anne Vernez Moudon, 2021. "Measuring the Urban Forms of Shanghai’s City Center and Its New Districts: A Neighborhood-Level Comparative Analysis," Sustainability, MDPI, vol. 13(15), pages 1-18, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:20:p:11342-:d:655814. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.