IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i20p11194-d653464.html
   My bibliography  Save this article

Power Quality Improvement Using Distributed Power Flow Controller with BWO-Based FOPID Controller

Author

Listed:
  • B. Srikanth Goud

    (Department of Electrical and Electronics Engineering, Anurag College of Engineering, Ghatkesar 501301, Telangana, India)

  • Ch. Rami Reddy

    (Department of Electrical and Electronics Engineering, Malla Reddy Engineering College (A), Maisammaguda, Secunderabad 500100, Telangana, India)

  • Mohit Bajaj

    (Department of Electrical and Electronics Engineering, National Institute of Technology Delhi, New Delhi 110040, India)

  • Ehab E. Elattar

    (Department of Electrical Engineering, College of Engineering, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia)

  • Salah Kamel

    (Department of Electrical Engineering, Faculty of Engineering, Aswan University, Aswan 81542, Egypt)

Abstract

The integration of hybrid renewable energy sources (HRESs) into the grid is currently being encouraged to meet the increasing demand for electric power and reduce fossil fuels which are causing environmental-related problems. Integration of HRESs into the grid can create some power quality (PQ) problems. To mitigate PQ problems and improve the performance of grid-connected HRESs some flexible devices should be used. This paper presents a distributed power flow controller (DPFC), as a type of flexible device to mitigate some PQ problems, including voltage sag, swell, disruptions, and eliminating the harmonics in a hybrid power system (HPS). The HPS presented in this work comprises a photo voltaic (PV) system, wind turbine (WT) and battery energy storage system (BESS). As a result, black widow optimization (BWO) with DPFC with real and reactive power (DPFC-PQ) is built in this paper to solve the PQ issues in HRES systems. The main aim of the work is to mitigate PQ problems and compensate for load demand in the HRES scheme. The controller used to drive this DPFC-PQ is a fractional-order PID (FOPID) controller optimized by the black widow optimization (BWO) technique. To assess the capability of BWO in fine-tuning the FOPID controller parameters, twelve optimization techniques were presented: P&O, PSO, Cuckoo, GA, GSA, BBO, Whale, ESA, RFA, ASO, and EVORFA. Additionally, a comparison between the FOPID controller and the classical PI controller is introduced. The results showed that the proposed BWO-FOPID controller for DFPC had mitigated the PQ problems in grid-connected HRESs. The system’s performance with the presented BWO-FOPID controller is compared with eleven optimization techniques used to optimize the FOPID controller and also compared with the conventional PI controller. The design of the proposed system is implemented in the MATLAB/Simulink platform and performances were analyzed.

Suggested Citation

  • B. Srikanth Goud & Ch. Rami Reddy & Mohit Bajaj & Ehab E. Elattar & Salah Kamel, 2021. "Power Quality Improvement Using Distributed Power Flow Controller with BWO-Based FOPID Controller," Sustainability, MDPI, vol. 13(20), pages 1-33, October.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:20:p:11194-:d:653464
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/20/11194/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/20/11194/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ch. Naga Sai Kalyan & B. Srikanth Goud & Ch. Rami Reddy & Haitham S. Ramadan & Mohit Bajaj & Ziad M. Ali, 2021. "Water Cycle Algorithm Optimized Type II Fuzzy Controller for Load Frequency Control of a Multi-Area, Multi-Fuel System with Communication Time Delays," Energies, MDPI, vol. 14(17), pages 1-19, August.
    2. Ch. Rami Reddy & B. Srikanth Goud & Flah Aymen & Gundala Srinivasa Rao & Edson C. Bortoni, 2021. "Power Quality Improvement in HRES Grid Connected System with FOPID Based Atom Search Optimization Technique," Energies, MDPI, vol. 14(18), pages 1-29, September.
    3. Muhyaddin Rawa & Abdullah Abusorrah & Yusuf Al-Turki & Saad Mekhilef & Mostafa H. Mostafa & Ziad M. Ali & Shady H. E. Abdel Aleem, 2020. "Optimal Allocation and Economic Analysis of Battery Energy Storage Systems: Self-Consumption Rate and Hosting Capacity Enhancement for Microgrids with High Renewable Penetration," Sustainability, MDPI, vol. 12(23), pages 1-25, December.
    4. Mayer, Martin János & Szilágyi, Artúr & Gróf, Gyula, 2020. "Environmental and economic multi-objective optimization of a household level hybrid renewable energy system by genetic algorithm," Applied Energy, Elsevier, vol. 269(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. M. Osama abed el-Raouf & Soad A. A. Mageed & M. M. Salama & Mohamed I. Mosaad & H. A. AbdelHadi, 2023. "Performance Enhancement of Grid-Connected Renewable Energy Systems Using UPFC," Energies, MDPI, vol. 16(11), pages 1-22, May.
    2. Dheyaa Ied Mahdi & Goksu Gorel, 2022. "Design and Control of Three-Phase Power System with Wind Power Using Unified Power Quality Conditioner," Energies, MDPI, vol. 15(19), pages 1-21, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Benedek Kiss & Jose Dinis Silvestre & Rita Andrade Santos & Zsuzsa Szalay, 2021. "Environmental and Economic Optimisation of Buildings in Portugal and Hungary," Sustainability, MDPI, vol. 13(24), pages 1-19, December.
    2. Singh, Pushpendra & Meena, Nand K. & Yang, Jin & Vega-Fuentes, Eduardo & Bishnoi, Shree Krishna, 2020. "Multi-criteria decision making monarch butterfly optimization for optimal distributed energy resources mix in distribution networks," Applied Energy, Elsevier, vol. 278(C).
    3. Jiang, Jianhua & Zhou, Renjie & Xu, Hao & Wang, Hao & Wu, Ping & Wang, Zhuo & Li, Jian, 2022. "Optimal sizing, operation strategy and case study of a grid-connected solid oxide fuel cell microgrid," Applied Energy, Elsevier, vol. 307(C).
    4. Morteza Nazari-Heris & Atefeh Tamaskani Esfehankalateh & Pouya Ifaei, 2023. "Hybrid Energy Systems for Buildings: A Techno-Economic-Enviro Systematic Review," Energies, MDPI, vol. 16(12), pages 1-15, June.
    5. Achitaev, Andrey A. & Suslov, Konstantin V. & Nazarychev, Alexander N. & Volkova, Irina O. & Kozhemyakin, Vyacheslav E. & Voloshin, Alexander A. & Minakov, Andrey V., 2022. "Application of electromagnetic continuous variable transmission in hydraulic turbines to increase stability of an off-grid power system," Renewable Energy, Elsevier, vol. 196(C), pages 125-136.
    6. José Luis Torres-Madroñero & Joham Alvarez-Montoya & Daniel Restrepo-Montoya & Jorge Mario Tamayo-Avendaño & César Nieto-Londoño & Julián Sierra-Pérez, 2020. "Technological and Operational Aspects That Limit Small Wind Turbines Performance," Energies, MDPI, vol. 13(22), pages 1-39, November.
    7. Wang, Chen & Guo, Su & Pei, Huanjin & He, Yi & Liu, Deyou & Li, Mengying, 2023. "Rolling optimization based on holism for the operation strategy of solar tower power plant," Applied Energy, Elsevier, vol. 331(C).
    8. Dheyaa Ied Mahdi & Goksu Gorel, 2022. "Design and Control of Three-Phase Power System with Wind Power Using Unified Power Quality Conditioner," Energies, MDPI, vol. 15(19), pages 1-21, September.
    9. Wang, Wenting & Yang, Dazhi & Huang, Nantian & Lyu, Chao & Zhang, Gang & Han, Xueying, 2022. "Irradiance-to-power conversion based on physical model chain: An application on the optimal configuration of multi-energy microgrid in cold climate," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    10. Fateh Mebarek-Oudina & Ines Chabani, 2023. "Review on Nano Enhanced PCMs: Insight on nePCM Application in Thermal Management/Storage Systems," Energies, MDPI, vol. 16(3), pages 1-21, January.
    11. Zhang, Yijie & Ma, Tao & Yang, Hongxing, 2022. "Grid-connected photovoltaic battery systems: A comprehensive review and perspectives," Applied Energy, Elsevier, vol. 328(C).
    12. Yanchen Liu & Minfang Peng, 2024. "Deep Learning Algorithm for Solving Interval of Weight Coefficient of Wind–Thermal–Storage System," Energies, MDPI, vol. 17(5), pages 1-18, February.
    13. Mayer, Martin János, 2022. "Impact of the tilt angle, inverter sizing factor and row spacing on the photovoltaic power forecast accuracy," Applied Energy, Elsevier, vol. 323(C).
    14. Rohács, Dániel, 2023. "Analysis and optimization of potential energy sources for residential building application," Energy, Elsevier, vol. 275(C).
    15. Mohammed M. Alhaider & Ziad M. Ali & Mostafa H. Mostafa & Shady H. E. Abdel Aleem, 2023. "Economic Viability of NaS Batteries for Optimal Microgrid Operation and Hosting Capacity Enhancement under Uncertain Conditions," Sustainability, MDPI, vol. 15(20), pages 1-24, October.
    16. Zulqurnain Sabir & Adnène Arbi & Atef F. Hashem & Mohamed A Abdelkawy, 2023. "Morlet Wavelet Neural Network Investigations to Present the Numerical Investigations of the Prediction Differential Model," Mathematics, MDPI, vol. 11(21), pages 1-20, October.
    17. Fares, Dalila & Fathi, Mohamed & Mekhilef, Saad, 2022. "Performance evaluation of metaheuristic techniques for optimal sizing of a stand-alone hybrid PV/wind/battery system," Applied Energy, Elsevier, vol. 305(C).
    18. Moein Taghavi & Hamed Delkhosh & Mohsen Parsa Moghaddam & Alireza Sheikhi Fini, 2022. "Combined PV-Wind Hosting Capacity Enhancement of a Hybrid AC/DC Distribution Network Using Reactive Control of Convertors and Demand Flexibility," Sustainability, MDPI, vol. 14(13), pages 1-28, June.
    19. M. Osama abed el-Raouf & Soad A. A. Mageed & M. M. Salama & Mohamed I. Mosaad & H. A. AbdelHadi, 2023. "Performance Enhancement of Grid-Connected Renewable Energy Systems Using UPFC," Energies, MDPI, vol. 16(11), pages 1-22, May.
    20. Ritu Kandari & Neeraj Neeraj & Alexander Micallef, 2022. "Review on Recent Strategies for Integrating Energy Storage Systems in Microgrids," Energies, MDPI, vol. 16(1), pages 1-24, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:20:p:11194-:d:653464. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.