IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i19p11104-d651671.html
   My bibliography  Save this article

Potential Application of Biochar Composite Derived from Rice Straw and Animal Bones to Improve Plant Growth

Author

Listed:
  • Um-e-Laila

    (Institute of Botany, University of the Punjab, Lahore 54590, Pakistan)

  • Adnan Hussain

    (Institute of Botany, University of the Punjab, Lahore 54590, Pakistan)

  • Aisha Nazir

    (Institute of Botany, University of the Punjab, Lahore 54590, Pakistan)

  • Muhammad Shafiq

    (Institute of Botany, University of the Punjab, Lahore 54590, Pakistan)

  • Firdaus-e-Bareen

    (Institute of Botany, University of the Punjab, Lahore 54590, Pakistan)

Abstract

The current study is aimed at deriving biochar (BC) from rice straw (RS-BC) and waste bones (WB-BC), being wasted without adequate return at the expense of environmental degradation. The RS and WB feedstocks were pyrolyzed at 550 °C, and the potential of derived biochar as a slow nutrient releasing soil amendment was examined during the growth of ridge gourd. Proximate analysis of the prepared biochars showed significant improvement in ash content and fixed carbon as compared to their raw biomasses. Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) analysis of RS-BC and WB-BC displayed a diverse range of functional groups viz. derivatives of cellulose and hydroxylapatite (HA); macro and microporosity; multiple nutrients. Application of RS-BC and WB-BC in potted soil alone and as biochar composite (RS-BC+WB-BC) at 5, 10 and 15% ( w / w ) and chemical fertilizer (CF) resulted in a significant increase in soil pH, electrical conductivity (ECe), cation exchange capacity (CEC) and water holding capacity (WHC) in exchange for growth and yield of ridge gourd. However, there were insignificant differences in the growth of plants in response to RS-BC, WB-BC alone and CF with biochar composite at 15% amendment. For giving insignificantly different growth results than CF, the prepared biochar composite showed outstanding potential as an organic fertilizer applicable in agrarian soils to elevate soil properties and yield of agricultural commodities.

Suggested Citation

  • Um-e-Laila & Adnan Hussain & Aisha Nazir & Muhammad Shafiq & Firdaus-e-Bareen, 2021. "Potential Application of Biochar Composite Derived from Rice Straw and Animal Bones to Improve Plant Growth," Sustainability, MDPI, vol. 13(19), pages 1-16, October.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:19:p:11104-:d:651671
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/19/11104/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/19/11104/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Farooq, Muhammad Khalid & Kumar, S., 2013. "An assessment of renewable energy potential for electricity generation in Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 240-254.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aisha Nazir & Um-e- Laila & Firdaus-e- Bareen & Erum Hameed & Muhammad Shafiq, 2021. "Sustainable Management of Peanut Shell through Biochar and Its Application as Soil Ameliorant," Sustainability, MDPI, vol. 13(24), pages 1-15, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sohoo, Ihsanullah & Ritzkowski, Marco & Heerenklage, Jörn & Kuchta, Kerstin, 2021. "Biochemical methane potential assessment of municipal solid waste generated in Asian cities: A case study of Karachi, Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    2. Perwez, Usama & Sohail, Ahmed & Hassan, Syed Fahad & Zia, Usman, 2015. "The long-term forecast of Pakistan's electricity supply and demand: An application of long range energy alternatives planning," Energy, Elsevier, vol. 93(P2), pages 2423-2435.
    3. Kim, Hyeonjun & Song, Gayoung & Ha, Yoonhee, 2025. "Green hydrogen export potential in each Southeast Asian country based on exportable volumes and levelized cost of hydrogen," Applied Energy, Elsevier, vol. 383(C).
    4. Rafique, M. Mujahid & Rehman, S., 2017. "National energy scenario of Pakistan – Current status, future alternatives, and institutional infrastructure: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 156-167.
    5. Yassine Charabi & Sabah Abdul-Wahab & Abdul Majeed Al-Mahruqi & Selma Osman & Isra Osman, 2022. "The potential estimation and cost analysis of wind energy production in Oman," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(4), pages 5917-5937, April.
    6. Asante, Dennis & He, Zheng & Adjei, Nana Osae & Asante, Bismark, 2020. "Exploring the barriers to renewable energy adoption utilising MULTIMOORA- EDAS method," Energy Policy, Elsevier, vol. 142(C).
    7. Jabeen, Gul & Yan, Qingyou & Ahmad, Munir & Fatima, Nousheen & Jabeen, Maria & Li, Heng & Qamar, Shoaib, 2020. "Household-based critical influence factors of biogas generation technology utilization: A case of Punjab province of Pakistan," Renewable Energy, Elsevier, vol. 154(C), pages 650-660.
    8. Shabbir, Noman & Usman, Muhammad & Jawad, Muhammad & Zafar, Muhammad H. & Iqbal, Muhammad N. & Kütt, Lauri, 2020. "Economic analysis and impact on national grid by domestic photovoltaic system installations in Pakistan," Renewable Energy, Elsevier, vol. 153(C), pages 509-521.
    9. Yasar, Abdullah & Ali, Aleena & Tabinda, Amtul Bari & Tahir, Aleena, 2015. "Waste to energy analysis of shakarganj sugar mills; biogas production from the spent wash for electricity generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 126-132.
    10. Operacz, Agnieszka, 2017. "The term “effective hydropower potential” based on sustainable development – an initial case study of the Raba river in Poland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1453-1463.
    11. Javanmardi, Komar & van der Hilst, Floor & Fattahi, Amir & Camargo, Luis Ramirez & Faaij, André, 2025. "Unraveling the spatial complexity of national energy system models: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 213(C).
    12. Korai, Muhammad Safar & Mahar, Rasool Bux & Uqaili, Muhammad Aslam, 2017. "The feasibility of municipal solid waste for energy generation and its existing management practices in Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 338-353.
    13. Izadyar, Nima & Ong, Hwai Chyuan & Chong, W.T. & Leong, K.Y., 2016. "Resource assessment of the renewable energy potential for a remote area: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 908-923.
    14. Gaigalis, Vygandas & Markevicius, Antanas & Skema, Romualdas & Savickas, Juozas, 2015. "Sustainable energy strategy of Lithuanian Ignalina Nuclear Power Plant region for 2012–2035 as a chance for regional development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1680-1696.
    15. Lean, Hooi Hooi & Smyth, Russell, 2013. "Will policies to promote renewable electricity generation be effective? Evidence from panel stationarity and unit root tests for 115 countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 371-379.
    16. Yongping Zhai & Lingshui Mo & Madeleine Rawlins, 2018. "The Impact of Nationally Determined Contributions on the Energy Sector: Implications for ADB and Its Developing Member Countries," Working Papers id:12893, eSocialSciences.
    17. Riaz Uddin & Abdurrahman Javid Shaikh & Hashim Raza Khan & Muhammad Ayaz Shirazi & Athar Rashid & Saad Ahmed Qazi, 2021. "Renewable Energy Perspectives of Pakistan and Turkey: Current Analysis and Policy Recommendations," Sustainability, MDPI, vol. 13(6), pages 1-28, March.
    18. Duc Luong, Nguyen, 2015. "A critical review on potential and current status of wind energy in Vietnam," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 440-448.
    19. Zheng, Jiajia & Wang, Xingwu, 2021. "Can mobile information communication technologies (ICTs) promote the development of renewables?-evidence from seven countries," Energy Policy, Elsevier, vol. 149(C).
    20. Rehan, Mohammad & Raza, Muhammad Amir & Aman, M.M. & Abro, Abdul Ghani & Ismail, Iqbal Mohammad Ibrahim & Munir, Said & Summan, Ahmed & Shahzad, Khurram & Rashid, Muhammad Imtiaz & Ali, Nadeem, 2023. "Untapping the potential of bioenergy for achieving sustainable energy future in Pakistan," Energy, Elsevier, vol. 275(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:19:p:11104-:d:651671. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.