IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i19p11078-d651213.html
   My bibliography  Save this article

Considering Space Syntax in Bicycle Traffic Assignment with One or More User Classes

Author

Listed:
  • Seungkyu Ryu

    (Korea Institute of Science and Technology Information, Daejeon 34141, Korea)

  • Anthony Chen

    (Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China)

  • Jacqueline Su

    (Department of Urban Planning, University of California, Los Angeles, Los Angeles, CA 90095, USA)

  • Xintao Liu

    (Department of Land Surveying and Geo-Informatics, The Hong Kong Polytechnic University, Hong Kong, China)

  • Jiangbo (Gabe) Yu

    (AECOM, San Francisco, CA 94104, USA)

Abstract

Modeling bicycle traffic assignment requires consideration of the various factors and criteria that could play a role in a cyclist’s route decision-making process. However, existing studies on bicycle route choice analysis tend to overlook the less tangible or measurable aspects of cyclist route decision-making, such as a cyclist’s cognitive understanding of the network and a cyclist’s biking experience. This study explores the applicability of space syntax as a route cognitive attribute in a bicycle traffic assignment model. Since space syntax is a tool that links urban spatial layout to human movement, the results of a space syntax model can be used as a cognitive attribute for modeling bicycle movements with explicit consideration of the cognitive complexities of navigating through the environment. In developing a bicycle traffic assignment model, we considered relevant attributes such as route cognition, distance, and safety and integrated multiple user class analysis to reflect different biking experience levels. Numerical experiments using the Winnipeg network are conducted to demonstrate the applicability of the proposed bicycle traffic assignment model with one or more user classes.

Suggested Citation

  • Seungkyu Ryu & Anthony Chen & Jacqueline Su & Xintao Liu & Jiangbo (Gabe) Yu, 2021. "Considering Space Syntax in Bicycle Traffic Assignment with One or More User Classes," Sustainability, MDPI, vol. 13(19), pages 1-15, October.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:19:p:11078-:d:651213
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/19/11078/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/19/11078/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Abhijit Paul, 2013. "Reviewing the axial-line approach to capturing vehicular trip-makers’ route-choice decisions with ground reality," Transportation, Springer, vol. 40(3), pages 697-711, May.
    2. Broach, Joseph & Dill, Jennifer & Gliebe, John, 2012. "Where do cyclists ride? A route choice model developed with revealed preference GPS data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(10), pages 1730-1740.
    3. Jonas Schmid-Querg & Andreas Keler & Georgios Grigoropoulos, 2021. "The Munich Bikeability Index: A Practical Approach for Measuring Urban Bikeability," Sustainability, MDPI, vol. 13(1), pages 1-14, January.
    4. Marek Bauer & Piotr Kisielewski, 2021. "The Influence of the Duration of Journey Stages on Transport Mode Choice: A Case Study in the City of Tarnow," Sustainability, MDPI, vol. 13(11), pages 1-15, May.
    5. Xiaojia Guo & Chengpeng Lu & Dongqi Sun & Yexin Gao & Bing Xue, 2021. "Comparison of Usage and Influencing Factors between Governmental Public Bicycles and Dockless Bicycles in Linfen City, China," Sustainability, MDPI, vol. 13(12), pages 1-14, June.
    6. Alexandros Nikitas & Stefanos Tsigdinos & Christos Karolemeas & Efthymia Kourmpa & Efthimios Bakogiannis, 2021. "Cycling in the Era of COVID-19: Lessons Learnt and Best Practice Policy Recommendations for a More Bike-Centric Future," Sustainability, MDPI, vol. 13(9), pages 1-25, April.
    7. Menghini, G. & Carrasco, N. & Schüssler, N. & Axhausen, K.W., 2010. "Route choice of cyclists in Zurich," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(9), pages 754-765, November.
    8. Ehrgott, Matthias & Wang, Judith Y.T. & Raith, Andrea & van Houtte, Chris, 2012. "A bi-objective cyclist route choice model," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(4), pages 652-663.
    9. Ugo N. Castañon & Paulo J. G. Ribeiro, 2021. "Bikeability and Emerging Phenomena in Cycling: Exploratory Analysis and Review," Sustainability, MDPI, vol. 13(4), pages 1-21, February.
    10. Dhanani, Ashley & Tarkhanyan, Lusine & Vaughan, Laura, 2017. "Estimating pedestrian demand for active transport evaluation and planning," Transportation Research Part A: Policy and Practice, Elsevier, vol. 103(C), pages 54-69.
    11. Martens, Karel, 2007. "Promoting bike-and-ride: The Dutch experience," Transportation Research Part A: Policy and Practice, Elsevier, vol. 41(4), pages 326-338, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tianyang Ge & Wenjun Hou & Yang Xiao, 2023. "Study on the Regeneration of City Centre Spatial Structure Pedestrianisation Based on Space Syntax: Case Study on 21 City Centres in the UK," Land, MDPI, vol. 12(6), pages 1-26, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Seungkyu Ryu, 2020. "A Bicycle Origin–Destination Matrix Estimation Based on a Two-Stage Procedure," Sustainability, MDPI, vol. 12(7), pages 1-14, April.
    2. Ospina, Juan P. & Duque, Juan C. & Botero-Fernández, Verónica & Montoya, Alejandro, 2022. "The maximal covering bicycle network design problem," Transportation Research Part A: Policy and Practice, Elsevier, vol. 159(C), pages 222-236.
    3. McArthur, David Philip & Hong, Jinhyun, 2019. "Visualising where commuting cyclists travel using crowdsourced data," Journal of Transport Geography, Elsevier, vol. 74(C), pages 233-241.
    4. Felipe González & Carlos Melo-Riquelme & Louis Grange, 2016. "A combined destination and route choice model for a bicycle sharing system," Transportation, Springer, vol. 43(3), pages 407-423, May.
    5. Bagloee, Saeed Asadi & Sarvi, Majid & Wallace, Mark, 2016. "Bicycle lane priority: Promoting bicycle as a green mode even in congested urban area," Transportation Research Part A: Policy and Practice, Elsevier, vol. 87(C), pages 102-121.
    6. Pucher, John & Buehler, Ralph & Seinen, Mark, 2011. "Bicycling renaissance in North America? An update and re-appraisal of cycling trends and policies," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(6), pages 451-475, July.
    7. Stefan Flügel & Nina Hulleberg & Aslak Fyhri & Christian Weber & Gretar Ævarsson, 2019. "Empirical speed models for cycling in the Oslo road network," Transportation, Springer, vol. 46(4), pages 1395-1419, August.
    8. Anowar, Sabreena & Eluru, Naveen & Hatzopoulou, Marianne, 2017. "Quantifying the value of a clean ride: How far would you bicycle to avoid exposure to traffic-related air pollution?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 105(C), pages 66-78.
    9. Ehrgott, Matthias & Wang, Judith Y.T. & Raith, Andrea & van Houtte, Chris, 2012. "A bi-objective cyclist route choice model," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(4), pages 652-663.
    10. Paulsen, Mads & Rich, Jeppe, 2023. "Societally optimal expansion of bicycle networks," Transportation Research Part B: Methodological, Elsevier, vol. 174(C).
    11. Mete Suleyman & Cil Zeynel Abidin & Özceylan Eren, 2018. "Location and Coverage Analysis of Bike- Sharing Stations in University Campus," Business Systems Research, Sciendo, vol. 9(2), pages 80-95, July.
    12. Meister, Adrian & Felder, Matteo & Schmid, Basil & Axhausen, Kay W., 2023. "Route choice modeling for cyclists on urban networks," Transportation Research Part A: Policy and Practice, Elsevier, vol. 173(C).
    13. Liu, Shan & Jiang, Hai & Chen, Shuiping & Ye, Jing & He, Renqing & Sun, Zhizhao, 2020. "Integrating Dijkstra’s algorithm into deep inverse reinforcement learning for food delivery route planning," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).
    14. Wong, Melvin & Farooq, Bilal & Bilodeau, Guillaume-Alexandre, 2016. "Next Direction Route Choice Model for Cyclist Using Panel Data," 57th Transportation Research Forum (51st CTRF) Joint Conference, Toronto, Ontario, May 1-4, 2016 319265, Transportation Research Forum.
    15. Cheng, Yung-Hsiang & Liu, Kuo-Chu, 2012. "Evaluating bicycle-transit users’ perceptions of intermodal inconvenience," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(10), pages 1690-1706.
    16. Fitch, Dillon T. & Handy, Susan L., 2020. "Road environments and bicyclist route choice: The cases of Davis and San Francisco, CA," Journal of Transport Geography, Elsevier, vol. 85(C).
    17. Minaei, Negin, 2014. "Do modes of transportation and GPS affect cognitive maps of Londoners?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 70(C), pages 162-180.
    18. Ruiz, Tomás & Bernabé, José C., 2014. "Measuring factors influencing valuation of nonmotorized improvement measures," Transportation Research Part A: Policy and Practice, Elsevier, vol. 67(C), pages 195-211.
    19. Mora-Navarro, Gaspar & Femenia-Ribera, Carmen & Martinez-Llario, Jose & Antequera-Terroso, Enrique, 2018. "Optimising urban routes as a factor to favour sustainable school transport," Journal of Transport Geography, Elsevier, vol. 72(C), pages 211-217.
    20. Scott, Darren M. & Lu, Wei & Brown, Matthew J., 2021. "Route choice of bike share users: Leveraging GPS data to derive choice sets," Journal of Transport Geography, Elsevier, vol. 90(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:19:p:11078-:d:651213. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.