IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v174y2023ics0191261523000954.html
   My bibliography  Save this article

Societally optimal expansion of bicycle networks

Author

Listed:
  • Paulsen, Mads
  • Rich, Jeppe

Abstract

In this paper, we consider the problem of expanding bicycle networks over time. The expansion of the network at a given point in time is based on the societal cost–benefit performance, which entails system-wide effects from previous expansions. The problem is challenging due to non-linearities of travel time benefits and the dimension of the problem, which is a consequence of the combinatorial complexity of the networks and the planning horizon. It rules out the use of conventional bottom-up cost–benefit analysis as evaluating even a small set of possible solutions becomes computationally infeasible. To circumvent this problem, we introduce a novel reverse geographical mapping approach where the monetary benefits are assigned back onto the network. This allows a more detailed geographical planning breakdown at the level of network links and makes it possible to apply a more stringent optimization approach with respect to the timing and prioritization of network expansions. Based on a linear approximation of travel time savings, we propose several variants of mathematical integer programs to solve the problem. This allows us to consider the case of growing a cycle superhighway network in the Copenhagen region over a time horizon of 50 years. We show that our approximations of travel time savings are largely similar to those obtained through actual traffic assignment. Furthermore, the optimization approach renders a development plan, which yields a net present value that is ten times larger than that of the actual infrastructure upgrades implemented since 2019. In a long-term scenario, it is shown that our solution returns an accumulated benefit–cost ratio of 2.7 over the period, which is a significant improvement over previous findings. This underlines the importance of optimal prioritization schemes of where and when to invest in bicycle network expansions.

Suggested Citation

  • Paulsen, Mads & Rich, Jeppe, 2023. "Societally optimal expansion of bicycle networks," Transportation Research Part B: Methodological, Elsevier, vol. 174(C).
  • Handle: RePEc:eee:transb:v:174:y:2023:i:c:s0191261523000954
    DOI: 10.1016/j.trb.2023.06.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261523000954
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2023.06.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Menghini, G. & Carrasco, N. & Schüssler, N. & Axhausen, K.W., 2010. "Route choice of cyclists in Zurich," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(9), pages 754-765, November.
    2. Mackie, Peter & Worsley, Tom & Eliasson, Jonas, 2014. "Transport appraisal revisited," Research in Transportation Economics, Elsevier, vol. 47(C), pages 3-18.
    3. Ralph Chapman & Michael Keall & Philippa Howden-Chapman & Mark Grams & Karen Witten & Edward Randal & Alistair Woodward, 2018. "A Cost Benefit Analysis of an Active Travel Intervention with Health and Carbon Emission Reduction Benefits," IJERPH, MDPI, vol. 15(5), pages 1-10, May.
    4. Broach, Joseph & Dill, Jennifer & Gliebe, John, 2012. "Where do cyclists ride? A route choice model developed with revealed preference GPS data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(10), pages 1730-1740.
    5. Liu, Haoxiang & Szeto, W.Y. & Long, Jiancheng, 2019. "Bike network design problem with a path-size logit-based equilibrium constraint: Formulation, global optimization, and matheuristic," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 127(C), pages 284-307.
    6. Louise Foley & Dorothea Dumuid & Andrew J Atkin & Katrien Wijndaele & David Ogilvie & Timothy Olds, 2019. "Cross-sectional and longitudinal associations between active commuting and patterns of movement behaviour during discretionary time: A compositional data analysis," PLOS ONE, Public Library of Science, vol. 14(8), pages 1-19, August.
    7. Ospina, Juan P. & Duque, Juan C. & Botero-Fernández, Verónica & Montoya, Alejandro, 2022. "The maximal covering bicycle network design problem," Transportation Research Part A: Policy and Practice, Elsevier, vol. 159(C), pages 222-236.
    8. Standen, Christopher & Greaves, Stephen & Collins, Andrew T. & Crane, Melanie & Rissel, Chris, 2019. "The value of slow travel: Economic appraisal of cycling projects using the logsum measure of consumer surplus," Transportation Research Part A: Policy and Practice, Elsevier, vol. 123(C), pages 255-268.
    9. Jessica Schoner & David Levinson, 2014. "The missing link: bicycle infrastructure networks and ridership in 74 US cities," Transportation, Springer, vol. 41(6), pages 1187-1204, November.
    10. Roger Vickerman, 2007. "Cost — Benefit Analysis and Large-Scale Infrastructure Projects: State of the Art and Challenges," Environment and Planning B, , vol. 34(4), pages 598-610, August.
    11. Boardman,Anthony E. & Greenberg,David H. & Vining,Aidan R. & Weimer,David L., 2018. "Cost-Benefit Analysis," Cambridge Books, Cambridge University Press, number 9781108415996, November.
      • Boardman,Anthony E. & Greenberg,David H. & Vining,Aidan R. & Weimer,David L., 2018. "Cost-Benefit Analysis," Cambridge Books, Cambridge University Press, number 9781108401296, November.
    12. Markus Schläpfer & Lei Dong & Kevin O’Keeffe & Paolo Santi & Michael Szell & Hadrien Salat & Samuel Anklesaria & Mohammad Vazifeh & Carlo Ratti & Geoffrey B. West, 2021. "The universal visitation law of human mobility," Nature, Nature, vol. 593(7860), pages 522-527, May.
    13. Skov-Petersen, Hans & Jacobsen, Jette Bredahl & Vedel, Suzanne Elizabeth & Thomas Alexander, Sick Nielsen & Rask, Simon, 2017. "Effects of upgrading to cycle highways - An analysis of demand induction, use patterns and satisfaction before and after," Journal of Transport Geography, Elsevier, vol. 64(C), pages 203-210.
    14. Börjesson, Maria & Eliasson, Jonas, 2012. "The value of time and external benefits in bicycle appraisal," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(4), pages 673-683.
    15. Jen-Jia Lin & Chia-Jung Yu, 2013. "A bikeway network design model for urban areas," Transportation, Springer, vol. 40(1), pages 45-68, January.
    16. Hallberg, Martin & Rasmussen, Thomas Kjær & Rich, Jeppe, 2021. "Modelling the impact of cycle superhighways and electric bicycles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 149(C), pages 397-418.
    17. Ray Pritchard, 2018. "Revealed Preference Methods for Studying Bicycle Route Choice—A Systematic Review," IJERPH, MDPI, vol. 15(3), pages 1-30, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ospina, Juan P. & Duque, Juan C. & Botero-Fernández, Verónica & Montoya, Alejandro, 2022. "The maximal covering bicycle network design problem," Transportation Research Part A: Policy and Practice, Elsevier, vol. 159(C), pages 222-236.
    2. Łukawska, Mirosława & Paulsen, Mads & Rasmussen, Thomas Kjær & Jensen, Anders Fjendbo & Nielsen, Otto Anker, 2023. "A joint bicycle route choice model for various cycling frequencies and trip distances based on a large crowdsourced GPS dataset," Transportation Research Part A: Policy and Practice, Elsevier, vol. 176(C).
    3. McArthur, David Philip & Hong, Jinhyun, 2019. "Visualising where commuting cyclists travel using crowdsourced data," Journal of Transport Geography, Elsevier, vol. 74(C), pages 233-241.
    4. Fitch, Dillon T. & Handy, Susan L., 2020. "Road environments and bicyclist route choice: The cases of Davis and San Francisco, CA," Journal of Transport Geography, Elsevier, vol. 85(C).
    5. Vedel, Suzanne Elizabeth & Jacobsen, Jette Bredahl & Skov-Petersen, Hans, 2017. "Bicyclists’ preferences for route characteristics and crowding in Copenhagen – A choice experiment study of commuters," Transportation Research Part A: Policy and Practice, Elsevier, vol. 100(C), pages 53-64.
    6. Hallberg, Martin & Rasmussen, Thomas Kjær & Rich, Jeppe, 2021. "Modelling the impact of cycle superhighways and electric bicycles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 149(C), pages 397-418.
    7. Ospina, Juan P. & Duque, Juan C. & Botero-Fernández, Verónica & Brussel, Mark, 2022. "Understanding the effect of sociodemographic, natural and built environment factors on cycling accessibility," Journal of Transport Geography, Elsevier, vol. 102(C).
    8. Damant-Sirois, Gabriel & El-Geneidy, Ahmed M., 2015. "Who cycles more? Determining cycling frequency through a segmentation approach in Montreal, Canada," Transportation Research Part A: Policy and Practice, Elsevier, vol. 77(C), pages 113-125.
    9. Liu, Chengxi & Tapani, Andreas & Kristoffersson, Ida & Rydergren, Clas & Jonsson, Daniel, 2020. "Development of a large-scale transport model with focus on cycling," Transportation Research Part A: Policy and Practice, Elsevier, vol. 134(C), pages 164-183.
    10. Stefan Flügel & Nina Hulleberg & Aslak Fyhri & Christian Weber & Gretar Ævarsson, 2019. "Empirical speed models for cycling in the Oslo road network," Transportation, Springer, vol. 46(4), pages 1395-1419, August.
    11. Anowar, Sabreena & Eluru, Naveen & Hatzopoulou, Marianne, 2017. "Quantifying the value of a clean ride: How far would you bicycle to avoid exposure to traffic-related air pollution?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 105(C), pages 66-78.
    12. Caicedo, Angélica & Estrada, Miquel & Medina-Tapia, Marcos & Mayorga, Miguel, 2023. "Optimizing bike network design: A cost-effective methodology for heterogeneous travel demands using continuous approximation techniques," Transportation Research Part A: Policy and Practice, Elsevier, vol. 176(C).
    13. Meister, Adrian & Felder, Matteo & Schmid, Basil & Axhausen, Kay W., 2023. "Route choice modeling for cyclists on urban networks," Transportation Research Part A: Policy and Practice, Elsevier, vol. 173(C).
    14. Liu, Shan & Jiang, Hai & Chen, Shuiping & Ye, Jing & He, Renqing & Sun, Zhizhao, 2020. "Integrating Dijkstra’s algorithm into deep inverse reinforcement learning for food delivery route planning," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).
    15. Robson, Edward N. & Wijayaratna, Kasun P. & Dixit, Vinayak V., 2018. "A review of computable general equilibrium models for transport and their applications in appraisal," Transportation Research Part A: Policy and Practice, Elsevier, vol. 116(C), pages 31-53.
    16. Zuo, Ting & Wei, Heng, 2019. "Bikeway prioritization to increase bicycle network connectivity and bicycle-transit connection: A multi-criteria decision analysis approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 129(C), pages 52-71.
    17. Melo, Lucas Eduardo Araújo de & Isler, Cassiano Augusto, 2023. "Integrating link count data for enhanced estimation of deterrence functions: A case study of short-term bicycle network interventions," Journal of Transport Geography, Elsevier, vol. 112(C).
    18. Ralph Buehler & Jennifer Dill, 2016. "Bikeway Networks: A Review of Effects on Cycling," Transport Reviews, Taylor & Francis Journals, vol. 36(1), pages 9-27, January.
    19. Mahdi Rashidi & Seyed-Mohammad Seyedhosseini & Ali Naderan, 2023. "Defining Psychological Factors of Cycling in Tehran City," Sustainability, MDPI, vol. 15(4), pages 1-17, February.
    20. Wong, Melvin & Farooq, Bilal & Bilodeau, Guillaume-Alexandre, 2016. "Next Direction Route Choice Model for Cyclist Using Panel Data," 57th Transportation Research Forum (51st CTRF) Joint Conference, Toronto, Ontario, May 1-4, 2016 319265, Transportation Research Forum.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:174:y:2023:i:c:s0191261523000954. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.