IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i19p10870-d647188.html
   My bibliography  Save this article

Spatio-Temporal Modelling of the Change of Residential-Induced PM10 Pollution through Substitution of Coal with Natural Gas in Domestic Heating

Author

Listed:
  • Muzeyyen Anil Senyel Kurkcuoglu

    (City and Regional Planning, Middle East Technical University, Ankara 06800, Turkey)

  • Beyda Nur Zengin

    (City and Regional Planning, Middle East Technical University, Ankara 06800, Turkey)

Abstract

Air pollution has been one of the most critical urban problems. Urban energy networks are among the major sources of air pollution, particularly in highly populated urban areas. Residential heating, which is the primary cause of particulate matter (PM) emissions, contributes to the problem through the use of low-quality fuels, such as coal. Natural gas, although a fossil fuel, is a modern, relatively clean, and more efficient alternative in residential energy use, which helps to reduce particulate matter emissions. Coal was widely used in residential heating in İzmir, Turkey, whereas natural gas is a relatively new alternative which started to be used domestically in 2006. Switching from coal and other highly polluting fossil fuels to natural gas in urban energy distribution network has contributed to the alleviation of air pollution in the city in the past decade. Spatiotemporal analyses of the PM10 concentrations, and their relation to the natural gas investments, have been conducted in geographical information systems (GIS). The spatial distribution of the change in PM10 levels has been modeled with ordinary kriging for the 2010–2011 and 2018–2019 winter seasons. Interpolated PM10 surfaces show that there is a significant decrease in the emissions throughout the city in the overall, while the highest levels of decrease are observed in the southern part of the city. Overlaying the interpolated PM10 surfaces and the natural gas pipeline investments enables the demonstration of the mutual relationship between the change in emission levels and the energy distribution network. Indeed, the spatial distribution of the pollution concentrations appears to be parallel to the natural gas investments. The pipeline investments were intensive during the 2010–2018 period in the southern districts when compared the rest of the city. The use of natural gas in residential heating contributed to the decrease in PM10 emissions.

Suggested Citation

  • Muzeyyen Anil Senyel Kurkcuoglu & Beyda Nur Zengin, 2021. "Spatio-Temporal Modelling of the Change of Residential-Induced PM10 Pollution through Substitution of Coal with Natural Gas in Domestic Heating," Sustainability, MDPI, vol. 13(19), pages 1-17, September.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:19:p:10870-:d:647188
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/19/10870/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/19/10870/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yuriy Bilan & Dalia Streimikiene & Tetyana Vasylieva & Oleksii Lyulyov & Tetyana Pimonenko & Anatolii Pavlyk, 2019. "Linking between Renewable Energy, CO 2 Emissions, and Economic Growth: Challenges for Candidates and Potential Candidates for the EU Membership," Sustainability, MDPI, vol. 11(6), pages 1-16, March.
    2. Wadim Strielkowski & Elena Volkova & Luidmila Pushkareva & Dalia Streimikiene, 2019. "Innovative Policies for Energy Efficiency and the Use of Renewables in Households," Energies, MDPI, vol. 12(7), pages 1-17, April.
    3. Jacek Brożyna & Wadim Strielkowski & Alena Fomina & Natalya Nikitina, 2020. "Renewable Energy and EU 2020 Target for Energy Efficiency in the Czech Republic and Slovakia," Energies, MDPI, vol. 13(4), pages 1-20, February.
    4. Chengcheng Zhao & Jinghu Pan & Lianglin Zhang, 2021. "Spatio-Temporal Patterns of Global Population Exposure Risk of PM 2.5 from 2000–2016," Sustainability, MDPI, vol. 13(13), pages 1-19, July.
    5. Bulut, Umit & Muratoglu, Gonul, 2018. "Renewable energy in Turkey: Great potential, low but increasing utilization, and an empirical analysis on renewable energy-growth nexus," Energy Policy, Elsevier, vol. 123(C), pages 240-250.
    6. Mao, Xianqiang & Guo, Xiurui & Chang, Yongguan & Peng, Yingdeng, 2005. "Improving air quality in large cities by substituting natural gas for coal in China: changing idea and incentive policy implications," Energy Policy, Elsevier, vol. 33(3), pages 307-318, February.
    7. Amit Kumar & Arvind Chandra Pandey, 2013. "Spatio-temporal assessment of urban environmental conditions in Ranchi Township, India using remote sensing and Geographical Information System techniques," International Journal of Urban Sciences, Taylor & Francis Journals, vol. 17(1), pages 117-141, March.
    8. Robert Cichowicz & Maciej Dobrzański, 2021. "Modeling Pollutant Emissions: Influence of Two Heat and Power Plants on Urban Air Quality," Energies, MDPI, vol. 14(17), pages 1-18, August.
    9. Siyu Chen & Hong Chi, 2021. "Analysis of the Environmental Effects of the Clean Heating Policy in Northern China," Sustainability, MDPI, vol. 13(12), pages 1-11, June.
    10. Çolak, Murat & Kaya, İhsan, 2017. "Prioritization of renewable energy alternatives by using an integrated fuzzy MCDM model: A real case application for Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 840-853.
    11. Marius Bodor, 2021. "A Study on Indoor Particulate Matter Variation in Time Based on Count and Sizes and in Relation to Meteorological Conditions," Sustainability, MDPI, vol. 13(15), pages 1-9, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kamil Makieła & Błażej Mazur & Jakub Głowacki, 2022. "The Impact of Renewable Energy Supply on Economic Growth and Productivity," Energies, MDPI, vol. 15(13), pages 1-13, June.
    2. Ezbakhe, Fatine & Pérez-Foguet, Agustí, 2021. "Decision analysis for sustainable development: The case of renewable energy planning under uncertainty," European Journal of Operational Research, Elsevier, vol. 291(2), pages 601-613.
    3. Wadim Strielkowski & Lubomír Civín & Elena Tarkhanova & Manuela Tvaronavičienė & Yelena Petrenko, 2021. "Renewable Energy in the Sustainable Development of Electrical Power Sector: A Review," Energies, MDPI, vol. 14(24), pages 1-24, December.
    4. Yücenur, G. Nilay & Ipekçi, Ahmet, 2021. "SWARA/WASPAS methods for a marine current energy plant location selection problem," Renewable Energy, Elsevier, vol. 163(C), pages 1287-1298.
    5. Ali Cemal Benim & Björn Pfeiffelmann, 2019. "Comparison of Combustion Models for Lifted Hydrogen Flames within RANS Framework," Energies, MDPI, vol. 13(1), pages 1-24, December.
    6. Mohamed Ali Elleuch & Marwa Mallek & Ahmed Frikha & Wafik Hachicha & Awad M. Aljuaid & Murad Andejany, 2021. "Solving a Multiple User Energy Source Selection Problem Using a Fuzzy Multi-Criteria Group Decision-Making Approach," Energies, MDPI, vol. 14(14), pages 1-16, July.
    7. Pascal A. Schirmer & Iosif Mporas, 2019. "Statistical and Electrical Features Evaluation for Electrical Appliances Energy Disaggregation," Sustainability, MDPI, vol. 11(11), pages 1-14, June.
    8. Muhammad Riaz & Wojciech Sałabun & Hafiz Muhammad Athar Farid & Nawazish Ali & Jarosław Wątróbski, 2020. "A Robust q-Rung Orthopair Fuzzy Information Aggregation Using Einstein Operations with Application to Sustainable Energy Planning Decision Management," Energies, MDPI, vol. 13(9), pages 1-39, May.
    9. Wadim Strielkowski & Dalia Streimikiene & Alena Fomina & Elena Semenova, 2019. "Internet of Energy (IoE) and High-Renewables Electricity System Market Design," Energies, MDPI, vol. 12(24), pages 1-17, December.
    10. Akan, Taner & Gündüz, Halil İbrahim & Emirmahmutoğlu, Furkan & Işık, Ali Haydar, 2023. "Disaggregating renewable energy-growth nexus: W-ARDL and W-Toda-Yamamoto approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    11. Armenia Androniceanu & Irina Georgescu & Ionuț Nica & Nora Chiriță, 2023. "A Comprehensive Analysis of Renewable Energy Based on Integrating Economic Cybernetics and the Autoregressive Distributed Lag Model—The Case of Romania," Energies, MDPI, vol. 16(16), pages 1-28, August.
    12. Xiong, Yuyu & Guo, Hongxiang & Nor, Datin Dr Mariani Md & Song, Andong & Dai, Li, 2023. "Mineral resources depletion, environmental degradation, and exploitation of natural resources: COVID-19 aftereffects," Resources Policy, Elsevier, vol. 85(PA).
    13. Xu, Shang & Allen Klaiber, H., 2019. "The impact of new natural gas pipelines on emissions and fuel consumption in China," Resource and Energy Economics, Elsevier, vol. 55(C), pages 49-62.
    14. Maria A. Franco & Stefan N. Groesser, 2021. "A Systematic Literature Review of the Solar Photovoltaic Value Chain for a Circular Economy," Sustainability, MDPI, vol. 13(17), pages 1-35, August.
    15. Radosław Miśkiewicz, 2020. "Efficiency of Electricity Production Technology from Post-Process Gas Heat: Ecological, Economic and Social Benefits," Energies, MDPI, vol. 13(22), pages 1-15, November.
    16. Yunzhao, Lu, 2022. "Modelling the role of eco innovation, renewable energy, and environmental taxes in carbon emissions reduction in E−7 economies: Evidence from advance panel estimations," Renewable Energy, Elsevier, vol. 190(C), pages 309-318.
    17. Opeyemi, Akinyemi & Uchenna, Efobi & Simplice, Asongu & Evans, Osabuohein, 2019. "Renewable energy, trade performance and the conditional role of finance and institutional capacity in sub-Sahara African countries," Energy Policy, Elsevier, vol. 132(C), pages 490-498.
    18. Liu, Xiao & Hang, Ye & Wang, Qunwei & Chiu, Ching-Ren & Zhou, Dequn, 2022. "The role of energy consumption in global carbon intensity change: A meta-frontier-based production-theoretical decomposition analysis," Energy Economics, Elsevier, vol. 109(C).
    19. Mastrocinque, Ernesto & Ramírez, F. Javier & Honrubia-Escribano, Andrés & Pham, Duc T., 2022. "Industry 4.0 enabling sustainable supply chain development in the renewable energy sector: A multi-criteria intelligent approach," Technological Forecasting and Social Change, Elsevier, vol. 182(C).
    20. Tetyana Vasylieva & Oleksii Lyulyov & Yuriy Bilan & Dalia Streimikiene, 2019. "Sustainable Economic Development and Greenhouse Gas Emissions: The Dynamic Impact of Renewable Energy Consumption, GDP, and Corruption," Energies, MDPI, vol. 12(17), pages 1-12, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:19:p:10870-:d:647188. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.