IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i16p9015-d612940.html
   My bibliography  Save this article

A Many-Objective Optimization for an Eco-Efficient Flue Gas Desulfurization Process Using a Surrogate-Assisted Evolutionary Algorithm

Author

Listed:
  • Quande Dong

    (School of Information Engineering, Suzhou University, Suzhou 234000, China)

  • Cui Wang

    (Business School, Suzhou University, Suzhou 234000, China)

  • Shitong Peng

    (College of Engineering, Shantou University, Shantou 515063, China)

  • Ziting Wang

    (School of Fine Arts and Design, Suzhou University, Suzhou 234000, China)

  • Conghu Liu

    (School of Information Engineering, Suzhou University, Suzhou 234000, China)

Abstract

The flue gas desulfurization process in coal-fired power plants is energy and resource-intensive but the eco-efficiency of this process has scarcely been considered. Given the fluctuating unit load and complex desulfurization mechanism, optimizing the desulfurization system based on the traditional mechanistic model poses a great challenge. In this regard, the present study optimized the eco-efficiency from the perspective of operating data analysis. We formulated the issue of eco-efficiency improvement into a many-objective optimization problem. Considering the complexity between the system inputs and outputs and to further reduce the computational cost, we constructed a Kriging model and made a comparison between this model and the response surface methodology based on two accuracy metrics. This surrogate model was then incorporated into the NSGA-III algorithm to obtain the Pareto-optimal front. As this Pareto-optimal front provides multiple alternative operating options, we applied the TOPSIS to select the most appropriate alternative set of operating parameters. This approach was validated using the historical operation data from the desulfurization system at a coal-fired power plant in China with a 600 MW unit. The results indicated that the optimization would cause an improvement in the efficiency of desulfurization and energy efficiency but a slight increase in the consumption of limestone slurry. This study attempted to provide an effective operating strategy to enhance the eco-efficiency performance of desulfurization systems.

Suggested Citation

  • Quande Dong & Cui Wang & Shitong Peng & Ziting Wang & Conghu Liu, 2021. "A Many-Objective Optimization for an Eco-Efficient Flue Gas Desulfurization Process Using a Surrogate-Assisted Evolutionary Algorithm," Sustainability, MDPI, vol. 13(16), pages 1-17, August.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:16:p:9015-:d:612940
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/16/9015/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/16/9015/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yue, Li, 2012. "Dynamics of clean coal-fired power generation development in China," Energy Policy, Elsevier, vol. 51(C), pages 138-142.
    2. Liu, Conghu & Gao, Mengdi & Zhu, Guang & Zhang, Cuixia & Zhang, Pan & Chen, Jianqing & Cai, Wei, 2021. "Data driven eco-efficiency evaluation and optimization in industrial production," Energy, Elsevier, vol. 224(C).
    3. Jie, Dingfei & Xu, Xiangyang & Guo, Fei, 2021. "The future of coal supply in China based on non-fossil energy development and carbon price strategies," Energy, Elsevier, vol. 220(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fangyi Li & Zhaoyang Ye & Xilin Xiao & Dawei Ma, 2019. "Environmental Benefits of Stock Evolution of Coal-Fired Power Generators in China," Sustainability, MDPI, vol. 11(19), pages 1-17, October.
    2. Zhanjie Feng & Zhenqi Hu & Xi Zhang & Yuhang Zhang & Ruihao Cui & Li Lu, 2023. "Integrated Mining and Reclamation Practices Enhance Sustainable Land Use: A Case Study in Huainan Coalfield, China," Land, MDPI, vol. 12(11), pages 1-15, October.
    3. Li, Zheng-Zheng & Li, Yameng & Huang, Chia-Yun & Peculea, Adelina Dumitrescu, 2023. "Volatility spillover across Chinese carbon markets: Evidence from quantile connectedness method," Energy Economics, Elsevier, vol. 119(C).
    4. Fuquan Zhao & Fanlong Bai & Xinglong Liu & Zongwei Liu, 2022. "A Review on Renewable Energy Transition under China’s Carbon Neutrality Target," Sustainability, MDPI, vol. 14(22), pages 1-27, November.
    5. Xiao, Wu & Cheng, Andi & Li, Shuai & Jiang, Xiaobin & Ruan, Xuehua & He, Gaohong, 2021. "A multi-objective optimization strategy of steam power system to achieve standard emission and optimal economic by NSGA-Ⅱ," Energy, Elsevier, vol. 232(C).
    6. Zeng, Yingying, 2017. "Indirect double regulation and the carbon ETSs linking: The case of coal-fired generation in the EU and China," Energy Policy, Elsevier, vol. 111(C), pages 268-280.
    7. Aiyong Lin & Yujia Liu & Shuling Zhou & Yajie Zhang & Cui Wang & Heping Ding, 2023. "Data-Driven Analysis and Evaluation of Regional Resources and the Environmental Carrying Capacity," Sustainability, MDPI, vol. 15(10), pages 1-18, May.
    8. Zhang, Hemeng & Wang, Pengcheng & Wang, Yongjun & Vo Thanh, Hung & Ngo, Ichhuy & Lu, Xiaoli & Yang, Xiaochen & Zhang, Xiaoming & Sasaki, Kyuro, 2024. "Investigate on spontaneous combustion characteristics of lignite stockpiles considering moisture and particle size effects," Energy, Elsevier, vol. 309(C).
    9. Xingyuan Wang & Fan Jia & Yutao Wang, 2015. "Evaluation of Clean Coal Technologies in China: Based on Rough Set Theory," Energy & Environment, , vol. 26(6-7), pages 985-995, November.
    10. Wang, Yadong & Wang, Delu & Shi, Xunpeng, 2022. "Exploring the multidimensional effects of China's coal de-capacity policy: A regression discontinuity design," Resources Policy, Elsevier, vol. 75(C).
    11. Liu, Xingnan & Lu, Hao & Zhao, Wenjun & Chen, Yuhang & Shao, Shiru, 2025. "Research on optimal scheduling and source-network-load correlation matching of integrated energy system considering uncertainty," Energy, Elsevier, vol. 321(C).
    12. Jianfeng Huang & Zhuopeng Zeng & Fenglian Hong & Qianhua Yang & Feng Wu & Shitong Peng, 2024. "Sustainable Operation Strategy for Wet Flue Gas Desulfurization at a Coal-Fired Power Plant via an Improved Many-Objective Optimization," Sustainability, MDPI, vol. 16(19), pages 1-18, September.
    13. Li, Yuanyuan & Zhou, Luyao & Xu, Gang & Fang, Yaxiong & Zhao, Shifei & Yang, Yongping, 2014. "Thermodynamic analysis and optimization of a double reheat system in an ultra-supercritical power plant," Energy, Elsevier, vol. 74(C), pages 202-214.
    14. Teng, Xiangyu & Zhuang, Weiwei & Liu, Fan-peng & Chang, Tzu-han & Chiu, Yung-ho, 2023. "China's path of carbon neutralization to develop green energy and improve energy efficiency," Renewable Energy, Elsevier, vol. 206(C), pages 397-408.
    15. Zeng, Lanyan & Liu, Shi Qiang & Kozan, Erhan & Corry, Paul & Masoud, Mahmoud, 2021. "A comprehensive interdisciplinary review of mine supply chain management," Resources Policy, Elsevier, vol. 74(C).
    16. Fangtian Wang & Hongfei Qu & Wei Tian & Shilei Zhai & Liqiang Ma, 2022. "Ethical Construction and Development of Mining Engineering Based on the Safe, Efficient, Green, and Low-Carbon Concept," Sustainability, MDPI, vol. 14(21), pages 1-14, October.
    17. Xue Wu & Yaliu Yang & Conghu Liu & Guowei Xu & Yuxia Guo & Fan Liu & Yuan Wang, 2021. "Sustainability of Regional Agroecological Economic System Based on Emergy Theory: A Case Study of Anhui Province, China," Sustainability, MDPI, vol. 13(15), pages 1-21, July.
    18. Hin Yu Micah Cheung, 2024. "RETRACTED ARTICLE: Enriching Regional Economic Dynamics through a Knowledge-Driven Spatial Analysis Model: a Deep Learning Approach," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 15(3), pages 12293-12336, September.
    19. Xiaoxiao Si & Cuixia Zhang & Fan Liu, 2023. "Assessment and Suggestions on Sustainable Development of Regional Ecological Economy Based on Emergy Theory: A Case Study of Henan Province," Sustainability, MDPI, vol. 15(16), pages 1-18, August.
    20. Fakudze, Sandile & Wei, Yingyuan & Shang, Qianqian & Ma, Ru & Li, Yueh-Heng & Chen, Jianqiang & Zhou, Peiguo & Han, Jiangang & Liu, Chengguo, 2021. "Single-pot upgrading of run-of-mine coal and rice straw via Taguchi-optimized hydrothermal treatment: Fuel properties and synergistic effects," Energy, Elsevier, vol. 236(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:16:p:9015-:d:612940. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.