IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i19p8521-d1489513.html
   My bibliography  Save this article

Sustainable Operation Strategy for Wet Flue Gas Desulfurization at a Coal-Fired Power Plant via an Improved Many-Objective Optimization

Author

Listed:
  • Jianfeng Huang

    (Department of Mechanical Engineering, Shantou University, Shantou 515063, China)

  • Zhuopeng Zeng

    (Department of Mechanical Engineering, Shantou University, Shantou 515063, China)

  • Fenglian Hong

    (Department of Mechanical Engineering, Shantou University, Shantou 515063, China)

  • Qianhua Yang

    (Department of Mechanical Engineering, Shantou University, Shantou 515063, China)

  • Feng Wu

    (Datang Chaozhou Power Co., Ltd., Chaozhou 515154, China)

  • Shitong Peng

    (Department of Mechanical Engineering, Shantou University, Shantou 515063, China)

Abstract

Coal-fired power plants account for a large share of the power generation market in China. The mainstream method of desulfurization employed in the coal-fired power generation sector now is wet flue gas desulfurization. This process is known to have a high cost and be energy-/materially intensive. Due to the complicated desulfurization mechanism, it is challenging to improve the overall sustainability profile involving energy-, cost-, and resource-relevant objectives via traditional mechanistic models. As such, the present study formulated a data-driven many-objective model for the sustainability of the desulfurization process. We preprocessed the actual operation data collected from the desulfurization tower in a domestic ultra-supercritical coal-fired power plant with a 600 MW unit. The extreme random forest algorithm was adopted to approximate the objective functions as prediction models for four objectives, namely, desulfurization efficiency, unit power consumption, limestone supply, and unit operation cost. Three metrics were utilized to evaluate the performance of prediction. Then, we incorporated differential evolution and non-dominated sorting genetic algorithm-III to optimize the multiple parameters and obtain the Pareto front. The results indicated that the correlation coefficient (R2) values of the prediction models were greater than 0.97. Compared with the original operation condition, the operation under optimized parameters could improve the desulfurization efficiency by 0.25% on average and reduce energy, cost, and slurry consumption significantly. This study would help develop operation strategies to improve the sustainability of coal-fired power plants.

Suggested Citation

  • Jianfeng Huang & Zhuopeng Zeng & Fenglian Hong & Qianhua Yang & Feng Wu & Shitong Peng, 2024. "Sustainable Operation Strategy for Wet Flue Gas Desulfurization at a Coal-Fired Power Plant via an Improved Many-Objective Optimization," Sustainability, MDPI, vol. 16(19), pages 1-18, September.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:19:p:8521-:d:1489513
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/19/8521/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/19/8521/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jie, Dingfei & Xu, Xiangyang & Guo, Fei, 2021. "The future of coal supply in China based on non-fossil energy development and carbon price strategies," Energy, Elsevier, vol. 220(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Mingtao & Zhang, Juan & Liu, Huanwei, 2022. "Thermodynamic analysis and optimization of two low-grade energy driven transcritical CO2 combined cooling, heating and power systems," Energy, Elsevier, vol. 249(C).
    2. Zhanjie Feng & Zhenqi Hu & Xi Zhang & Yuhang Zhang & Ruihao Cui & Li Lu, 2023. "Integrated Mining and Reclamation Practices Enhance Sustainable Land Use: A Case Study in Huainan Coalfield, China," Land, MDPI, vol. 12(11), pages 1-15, October.
    3. Lee, Chien-Chiang & Wang, Chang-song, 2022. "Does natural resources matter for sustainable energy development in China: The role of technological progress," Resources Policy, Elsevier, vol. 79(C).
    4. Li, Zheng-Zheng & Li, Yameng & Huang, Chia-Yun & Peculea, Adelina Dumitrescu, 2023. "Volatility spillover across Chinese carbon markets: Evidence from quantile connectedness method," Energy Economics, Elsevier, vol. 119(C).
    5. Fuquan Zhao & Fanlong Bai & Xinglong Liu & Zongwei Liu, 2022. "A Review on Renewable Energy Transition under China’s Carbon Neutrality Target," Sustainability, MDPI, vol. 14(22), pages 1-27, November.
    6. Xiao, Wu & Cheng, Andi & Li, Shuai & Jiang, Xiaobin & Ruan, Xuehua & He, Gaohong, 2021. "A multi-objective optimization strategy of steam power system to achieve standard emission and optimal economic by NSGA-Ⅱ," Energy, Elsevier, vol. 232(C).
    7. Zhu, Yao & Wang, Qinhui & Li, Kaikun & Cen, Jianmeng & Fang, Mengxiang & Ying, Chengdong, 2022. "Study on pressurized isothermal pyrolysis characteristics of low-rank coal in a pressurized micro-fluidized bed reaction analyzer," Energy, Elsevier, vol. 240(C).
    8. Dongsen Li & Kang Qian & Ciwei Gao & Yiyue Xu & Qiang Xing & Zhangfan Wang, 2024. "Research on Electric Hydrogen Hybrid Storage Operation Strategy for Wind Power Fluctuation Suppression," Energies, MDPI, vol. 17(20), pages 1-15, October.
    9. Xiling Zhang & Xiaoqian Liu & Zeyu Zhang & Ruiyi Tang & Ting Zhang & Jian Yao, 2024. "The Synergistic Effect of the Carbon Emission Trading Scheme on Pollution and Carbon Reduction in China’s Power Industry," Sustainability, MDPI, vol. 16(19), pages 1-17, October.
    10. Xue, Xiaodong & Li, Guangyang & Wang, Yulin & Han, Wei & Liu, Changchun & Jiao, Fan, 2025. "Proposal and evaluation of a near-zero carbon emissions hydrogen production system coupled with photovoltaic, photothermal and coal gasification," Applied Energy, Elsevier, vol. 377(PA).
    11. Wang Gao & Jiajia Wei & Shixiong Yang, 2023. "The Asymmetric Effects of Extreme Climate Risk Perception on Coal Futures Return Dynamics: Evidence from Nonparametric Causality-In-Quantiles Tests," Sustainability, MDPI, vol. 15(10), pages 1-19, May.
    12. Liu, Baoliu & Cifuentes-Faura, Javier & Ding, Chante Jian & Liu, Xiaoqian, 2023. "Toward carbon neutrality: How will environmental regulatory policies affect corporate green innovation?," Economic Analysis and Policy, Elsevier, vol. 80(C), pages 1006-1020.
    13. Xing, Zhizhong & Zhao, Shuanfeng & Guo, Wei & Meng, Fanyuan & Guo, Xiaojun & Wang, Shenquan & He, Haitao, 2023. "Coal resources under carbon peak: Segmentation of massive laser point clouds for coal mining in underground dusty environments using integrated graph deep learning model," Energy, Elsevier, vol. 285(C).
    14. Asadi, Mehrad & Tiwari, Aviral Kumar & Gholami, Samad & Ghasemi, Hamid Reza & Roubaud, David, 2023. "Understanding interconnections among steel, coal, iron ore, and financial assets in the US and China using an advanced methodology," International Review of Financial Analysis, Elsevier, vol. 89(C).
    15. Mengze He & Ping Zhou & Xiqiang Zhao & Tao Wang, 2025. "Completion of Waste Heat Recovery and CO 2 Conversion Simultaneously Based on the Flue Gas Chemical Recuperative Cycle: A Review," Energies, MDPI, vol. 18(2), pages 1-25, January.
    16. Zhang, Hemeng & Wang, Pengcheng & Wang, Yongjun & Vo Thanh, Hung & Ngo, Ichhuy & Lu, Xiaoli & Yang, Xiaochen & Zhang, Xiaoming & Sasaki, Kyuro, 2024. "Investigate on spontaneous combustion characteristics of lignite stockpiles considering moisture and particle size effects," Energy, Elsevier, vol. 309(C).
    17. Xin, Tuantuan & Zhang, Yifei & Li, Xikang & Xu, Hongyu & Xu, Cheng, 2024. "A novel coal-based Allam cycle coupled to CO2 gasification with improved thermodynamic and economic performance," Energy, Elsevier, vol. 293(C).
    18. Zhao, Qian & Qin, Chuan & Ding, Longfei & Cheng, Ying-Yue & Vătavu, Sorana, 2023. "Can green bond improve the investment efficiency of renewable energy?," Energy Economics, Elsevier, vol. 127(PB).
    19. Niu, Yu & Suo, Yonglu & Niu, Xian, 2023. "Insights into the response mechanism of Fusarium sp. NF01 during lignite biodegradation using proteomic analysis," Energy, Elsevier, vol. 278(PB).
    20. Wang, Yadong & Wang, Delu & Shi, Xunpeng, 2022. "Exploring the multidimensional effects of China's coal de-capacity policy: A regression discontinuity design," Resources Policy, Elsevier, vol. 75(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:19:p:8521-:d:1489513. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.