IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i15p8381-d602661.html
   My bibliography  Save this article

A Genetic Algorithm with Quantum Random Number Generator for Solving the Pollution-Routing Problem in Sustainable Logistics Management

Author

Listed:
  • Shih-Che Lo

    (Department of Industrial Management, National Taiwan University of Science and Technology, Taipei City 106335, Taiwan)

  • Yi-Cheng Shih

    (Department of Industrial Management, National Taiwan University of Science and Technology, Taipei City 106335, Taiwan)

Abstract

The increase of greenhouse gases emission, global warming, and even climate change is an ongoing issue. Sustainable logistics and distribution management can help reduce greenhouse gases emission and lighten its influence against our living environment. Quantum computing has become more and more popular in recent years for advancing artificial intelligence into the next generation. Hence, we apply quantum random number generator to provide true random numbers for the genetic algorithm to solve the pollution-routing problems (PRPs) in sustainable logistics management in this paper. The objective of the PRPs is to minimize carbon dioxide emissions, following one of the seventeen sustainable development goals set by the United Nations. We developed a two-phase hybrid model combining a modified k -means algorithm as a clustering method and a genetic algorithm with quantum random number generator as an optimization engine to solve the PRPs aiming to minimize the pollution produced by trucks traveling along delivery routes. We also compared the computation performance with another hybrid model by using a different optimization engine, i.e., the tabu search algorithm. From the experimental results, we found that both hybrid models can provide good solution quality for CO 2 emission minimization for 29 PRPs out of a total of 30 instances (30 runs each for all problems).

Suggested Citation

  • Shih-Che Lo & Yi-Cheng Shih, 2021. "A Genetic Algorithm with Quantum Random Number Generator for Solving the Pollution-Routing Problem in Sustainable Logistics Management," Sustainability, MDPI, vol. 13(15), pages 1-18, July.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:15:p:8381-:d:602661
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/15/8381/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/15/8381/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bektas, Tolga & Laporte, Gilbert, 2011. "The Pollution-Routing Problem," Transportation Research Part B: Methodological, Elsevier, vol. 45(8), pages 1232-1250, September.
    2. Erdoğan, Sevgi & Miller-Hooks, Elise, 2012. "A Green Vehicle Routing Problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(1), pages 100-114.
    3. Billy E. Gillett & Leland R. Miller, 1974. "A Heuristic Algorithm for the Vehicle-Dispatch Problem," Operations Research, INFORMS, vol. 22(2), pages 340-349, April.
    4. Xiao, Yiyong & Zuo, Xiaorong & Huang, Jiaoying & Konak, Abdullah & Xu, Yuchun, 2020. "The continuous pollution routing problem," Applied Mathematics and Computation, Elsevier, vol. 387(C).
    5. Brandao, Jose & Mercer, Alan, 1997. "A tabu search algorithm for the multi-trip vehicle routing and scheduling problem," European Journal of Operational Research, Elsevier, vol. 100(1), pages 180-191, July.
    6. Demir, Emrah & Bektaş, Tolga & Laporte, Gilbert, 2014. "The bi-objective Pollution-Routing Problem," European Journal of Operational Research, Elsevier, vol. 232(3), pages 464-478.
    7. Gilbert Laporte, 2009. "Fifty Years of Vehicle Routing," Transportation Science, INFORMS, vol. 43(4), pages 408-416, November.
    8. Fred Glover, 1990. "Tabu Search: A Tutorial," Interfaces, INFORMS, vol. 20(4), pages 74-94, August.
    9. G. B. Dantzig & J. H. Ramser, 1959. "The Truck Dispatching Problem," Management Science, INFORMS, vol. 6(1), pages 80-91, October.
    10. Franceschetti, Anna & Demir, Emrah & Honhon, Dorothée & Van Woensel, Tom & Laporte, Gilbert & Stobbe, Mark, 2017. "A metaheuristic for the time-dependent pollution-routing problem," European Journal of Operational Research, Elsevier, vol. 259(3), pages 972-991.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shih-Che Lo, 2022. "A Particle Swarm Optimization Approach to Solve the Vehicle Routing Problem with Cross-Docking and Carbon Emissions Reduction in Logistics Management," Logistics, MDPI, vol. 6(3), pages 1-15, September.
    2. Shih-Che Lo & Ying-Lin Chuang, 2023. "Vehicle Routing Optimization with Cross-Docking Based on an Artificial Immune System in Logistics Management," Mathematics, MDPI, vol. 11(4), pages 1-19, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Asghari, Mohammad & Mirzapour Al-e-hashem, S. Mohammad J., 2021. "Green vehicle routing problem: A state-of-the-art review," International Journal of Production Economics, Elsevier, vol. 231(C).
    2. Chiang, Wen-Chyuan & Li, Yuyu & Shang, Jennifer & Urban, Timothy L., 2019. "Impact of drone delivery on sustainability and cost: Realizing the UAV potential through vehicle routing optimization," Applied Energy, Elsevier, vol. 242(C), pages 1164-1175.
    3. Vidal, Thibaut & Crainic, Teodor Gabriel & Gendreau, Michel & Prins, Christian, 2013. "Heuristics for multi-attribute vehicle routing problems: A survey and synthesis," European Journal of Operational Research, Elsevier, vol. 231(1), pages 1-21.
    4. Eskandarpour, Majid & Ouelhadj, Djamila & Hatami, Sara & Juan, Angel A. & Khosravi, Banafsheh, 2019. "Enhanced multi-directional local search for the bi-objective heterogeneous vehicle routing problem with multiple driving ranges," European Journal of Operational Research, Elsevier, vol. 277(2), pages 479-491.
    5. Shijin Wang & Xiaodong Wang & Xin Liu & Jianbo Yu, 2018. "A Bi-Objective Vehicle-Routing Problem with Soft Time Windows and Multiple Depots to Minimize the Total Energy Consumption and Customer Dissatisfaction," Sustainability, MDPI, vol. 10(11), pages 1-21, November.
    6. Emna Marrekchi & Walid Besbes & Diala Dhouib & Emrah Demir, 2021. "A review of recent advances in the operations research literature on the green routing problem and its variants," Annals of Operations Research, Springer, vol. 304(1), pages 529-574, September.
    7. Leggieri, Valeria & Haouari, Mohamed, 2017. "A practical solution approach for the green vehicle routing problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 104(C), pages 97-112.
    8. Mohammad Asghari & Seyed Mohammad Javad Mirzapour Al-E-Hashem, 2021. "Green vehicle routing problem: A state-of-the-art review," Post-Print hal-03182944, HAL.
    9. Xiao, Yiyong & Zuo, Xiaorong & Huang, Jiaoying & Konak, Abdullah & Xu, Yuchun, 2020. "The continuous pollution routing problem," Applied Mathematics and Computation, Elsevier, vol. 387(C).
    10. Ehmke, Jan Fabian & Campbell, Ann M. & Thomas, Barrett W., 2018. "Optimizing for total costs in vehicle routing in urban areas," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 116(C), pages 242-265.
    11. Y H Lee & J I Kim & K H Kang & K H Kim, 2008. "A heuristic for vehicle fleet mix problem using tabu search and set partitioning," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(6), pages 833-841, June.
    12. Yagcitekin, Bunyamin & Uzunoglu, Mehmet, 2016. "A double-layer smart charging strategy of electric vehicles taking routing and charge scheduling into account," Applied Energy, Elsevier, vol. 167(C), pages 407-419.
    13. Raeesi, Ramin & Zografos, Konstantinos G., 2020. "The electric vehicle routing problem with time windows and synchronised mobile battery swapping," Transportation Research Part B: Methodological, Elsevier, vol. 140(C), pages 101-129.
    14. Jin Li & Feng Wang & Yu He, 2020. "Electric Vehicle Routing Problem with Battery Swapping Considering Energy Consumption and Carbon Emissions," Sustainability, MDPI, vol. 12(24), pages 1-20, December.
    15. Hamed Farrokhi-Asl & Ahmad Makui & Armin Jabbarzadeh & Farnaz Barzinpour, 2020. "Solving a multi-objective sustainable waste collection problem considering a new collection network," Operational Research, Springer, vol. 20(4), pages 1977-2015, December.
    16. Koyuncu, Işıl & Yavuz, Mesut, 2019. "Duplicating nodes or arcs in green vehicle routing: A computational comparison of two formulations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 122(C), pages 605-623.
    17. Gilbert Laporte, 2016. "Scheduling issues in vehicle routing," Annals of Operations Research, Springer, vol. 236(2), pages 463-474, January.
    18. Goeke, Dominik & Schneider, Michael, 2015. "Routing a mixed fleet of electric and conventional vehicles," European Journal of Operational Research, Elsevier, vol. 245(1), pages 81-99.
    19. Joonyup Eun & Byung Duk Song & Sangbok Lee & Dae-Eun Lim, 2019. "Mathematical Investigation on the Sustainability of UAV Logistics," Sustainability, MDPI, vol. 11(21), pages 1-15, October.
    20. Liu, Yiming & Roberto, Baldacci & Zhou, Jianwen & Yu, Yang & Zhang, Yu & Sun, Wei, 2023. "Efficient feasibility checks and an adaptive large neighborhood search algorithm for the time-dependent green vehicle routing problem with time windows," European Journal of Operational Research, Elsevier, vol. 310(1), pages 133-155.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:15:p:8381-:d:602661. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.