IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i15p8324-d601526.html
   My bibliography  Save this article

Formation of the Traffic Flow Rate under the Influence of Traffic Flow Concentration in Time at Controlled Intersections in Tyumen, Russian Federation

Author

Listed:
  • Viacheslav Morozov

    (Department of Road Transport Operation, Industrial University of Tyumen, 38 Volodarskogo Street, 625000 Tyumen, Russia)

  • Sergei Iarkov

    (Department of Road Transport Operation, Industrial University of Tyumen, 38 Volodarskogo Street, 625000 Tyumen, Russia)

Abstract

Present experience shows that it is impossible to solve the problem of traffic congestion without intelligent transport systems. Traffic management in many cities uses the data of detectors installed at controlled intersections. Further, to assess the traffic situation, the data on the traffic flow rate and its concentration are compared. Latest scientific studies propose a transition from spatial to temporal concentration. Therefore, the purpose of this work is to establish the regularities of the influence of traffic flow concentration in time on traffic flow rate at controlled city intersections. The methodological basis of this study was a systemic approach. Theoretical and experimental studies were based on the existing provisions of system analysis, traffic flow theory, experiment planning, impulses, probabilities, and mathematical statistics. Experimental data were obtained and processed using modern equipment and software: Traficam video detectors, SPECTR traffic light controller, Traficam Data Tool, SPECTR 2.0, AutoCad 2017, and STATISTICA 10. In the course of this study, the authors analyzed the dynamics of changes in the level of motorization, the structure of the motor vehicle fleet, and the dynamics of changes in the number of controlled intersections. As a result of theoretical studies, a hypothesis was put forward that the investigated process is described by a two-factor quadratic multiplicative model. Experimental studies determined the parameters of the developed model depending on the directions of traffic flow, and confirmed its adequacy according to Fisher’s criterion with a probability of at least 0.9. The results obtained can be used to control traffic flows at controlled city intersections.

Suggested Citation

  • Viacheslav Morozov & Sergei Iarkov, 2021. "Formation of the Traffic Flow Rate under the Influence of Traffic Flow Concentration in Time at Controlled Intersections in Tyumen, Russian Federation," Sustainability, MDPI, vol. 13(15), pages 1-21, July.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:15:p:8324-:d:601526
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/15/8324/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/15/8324/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. repec:cdl:uctcwp:qt3256f490 is not listed on IDEAS
    2. Diao, Mi, 2019. "Towards sustainable urban transport in Singapore: Policy instruments and mobility trends," Transport Policy, Elsevier, vol. 81(C), pages 320-330.
    3. Wilson, Richard W. & Shoup, Donald C., 1990. "Parking Subsidies and Travel Choices: Assessing the Evidence," University of California Transportation Center, Working Papers qt5w24532x, University of California Transportation Center.
    4. Artur I. Petrov & Daria A. Petrova, 2020. "Sustainability of Transport System of Large Russian City in the Period of COVID-19: Methods and Results of Assessment," Sustainability, MDPI, vol. 12(18), pages 1-17, September.
    5. Dmitriy Zakharov & Elena Magaril & Elena Cristina Rada, 2018. "Sustainability of the Urban Transport System under Changes in Weather and Road Conditions Affecting Vehicle Operation," Sustainability, MDPI, vol. 10(6), pages 1-17, June.
    6. Parkhurst, G., 2000. "Influence of bus-based park and ride facilities on users' car traffic," Transport Policy, Elsevier, vol. 7(2), pages 159-172, April.
    7. Tom Thomas & Rinus Jaarsma & Bas Tutert, 2013. "Exploring temporal fluctuations of daily cycling demand on Dutch cycle paths: the influence of weather on cycling," Transportation, Springer, vol. 40(1), pages 1-22, January.
    8. Caitlin D. Cottrill & Sybil Derrible, 2015. "Leveraging Big Data for the Development of Transport Sustainability Indicators," Journal of Urban Technology, Taylor & Francis Journals, vol. 22(1), pages 45-64, January.
    9. Vladimir Shepelev & Sergei Aliukov & Kseniya Nikolskaya & Salavat Shabiev, 2020. "The Capacity of the Road Network: Data Collection and Statistical Analysis of Traffic Characteristics," Energies, MDPI, vol. 13(7), pages 1-18, April.
    10. Xueyan Wei & Weijie Yu & Wei Wang & De Zhao & Xuedong Hua, 2020. "Optimization and Comparative Analysis of Traffic Restriction Policy by Jointly Considering Carpool Exemptions," Sustainability, MDPI, vol. 12(18), pages 1-15, September.
    11. Tatiana Petrova & Andrey Grunin & Arthur Shakhbazyan, 2020. "Integral Index of Traffic Planning: Case-Study of Moscow City’s Transportation System," Sustainability, MDPI, vol. 12(18), pages 1-22, September.
    12. Wei Wang & Zhentian Sun & Liya Wang & Shanshan Yu & Jun Chen, 2020. "Evaluation Model for the Level of Service of Shared-Use Paths Based on Traffic Conflicts," Sustainability, MDPI, vol. 12(18), pages 1-19, September.
    13. Rodríguez, Daniel A. & Levine, Jonathan & Agrawal, Asha Weinstein & Song, Jumin, 2011. "Can information promote transportation-friendly location decisions? A simulation experiment," Journal of Transport Geography, Elsevier, vol. 19(2), pages 304-312.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Viacheslav Morozov & Vladimir Shepelev & Viktor Kostyrchenko, 2022. "Modeling the Operation of Signal-Controlled Intersections with Different Lane Occupancy," Mathematics, MDPI, vol. 10(24), pages 1-24, December.
    2. Bingsheng Huang & Fusheng Zhang, 2022. "Analysis of Traffic Oversaturation Based on Multi-Objective Data," Sustainability, MDPI, vol. 14(15), pages 1-21, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Viacheslav Morozov & Vladimir Shepelev & Viktor Kostyrchenko, 2022. "Modeling the Operation of Signal-Controlled Intersections with Different Lane Occupancy," Mathematics, MDPI, vol. 10(24), pages 1-24, December.
    2. Dmitrii Zakharov & Alexey Fadyushin & Denis Chainikov, 2020. "Changes in the Environmental Sustainability of the Urban Transport System when Introducing Paid Parking for Private Vehicles," Resources, MDPI, vol. 9(9), pages 1-18, August.
    3. Fadyushin Alexey & Zakharov Dmitrii, 2020. "Influence of the Parameters of the Bus Lane and the Bus Stop on the Delays of Private and Public Transport," Sustainability, MDPI, vol. 12(22), pages 1-18, November.
    4. Bruno De Borger & Bart Wuyts, 2009. "Commuting, Transport Tax Reform and the Labour Market: Employer-paid Parking and the Relative Efficiency of Revenue Recycling Instruments," Urban Studies, Urban Studies Journal Limited, vol. 46(1), pages 213-233, January.
    5. repec:cdl:itsdav:qt4806754k is not listed on IDEAS
    6. Romain Petiot, 2004. "Parking enforcement and travel demand management," Post-Print hal-02422664, HAL.
    7. Tscharaktschiew, Stefan & Reimann, Felix, 2021. "On employer-paid parking and parking (cash-out) policy: A formal synthesis of different perspectives," Transport Policy, Elsevier, vol. 110(C), pages 499-516.
    8. Wessel, Jan, 2020. "Using weather forecasts to forecast whether bikes are used," Transportation Research Part A: Policy and Practice, Elsevier, vol. 138(C), pages 537-559.
    9. Bayissa Badada Badassa & Baiqing Sun & Lixin Qiao, 2020. "Sustainable Transport Infrastructure and Economic Returns: A Bibliometric and Visualization Analysis," Sustainability, MDPI, vol. 12(5), pages 1-24, March.
    10. Chandra, Shailesh & Jimenez, Jose & Radhakrishnan, Ramalingam, 2017. "Accessibility evaluations for nighttime walking and bicycling for low-income shift workers," Journal of Transport Geography, Elsevier, vol. 64(C), pages 97-108.
    11. Mariano J. Rabassa & Mariana Conte Grand & Christian M. García-Witulski, 2021. "Heat warnings and avoidance behavior: evidence from a bike-sharing system," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 23(1), pages 1-28, January.
    12. Deka, Devajyoti, 2012. "The impacts of non-resident parking restrictions at commuter rail stations," Journal of Transport Geography, Elsevier, vol. 24(C), pages 451-461.
    13. Bakker, P. & Koopmans, C. & Nijkamp, P., 2009. "Appraisal of integrated transport policies," Serie Research Memoranda 0052, VU University Amsterdam, Faculty of Economics, Business Administration and Econometrics.
    14. Rogier Pennings & Bart Wiegmans & Tejo Spit, 2020. "Can We Have Our Cake and Still Eat It? A Review of Flexibility in the Structural Spatial Development and Passenger Transport Relation in Developing Countries," Sustainability, MDPI, vol. 12(15), pages 1-25, July.
    15. Dugan, Anna & Mayer, Jakob & Thaller, Annina & Bachner, Gabriel & Steininger, Karl W., 2022. "Developing policy packages for low-carbon passenger transport: A mixed methods analysis of trade-offs and synergies," Ecological Economics, Elsevier, vol. 193(C).
    16. Pengfei Lin & Jiancheng Weng & Quan Liang & Dimitrios Alivanistos & Siyong Ma, 2020. "Impact of Weather Conditions and Built Environment on Public Bikesharing Trips in Beijing," Networks and Spatial Economics, Springer, vol. 20(1), pages 1-17, March.
    17. Rotaris, Lucia & Danielis, Romeo, 2014. "The impact of transportation demand management policies on commuting to college facilities: A case study at the University of Trieste, Italy," Transportation Research Part A: Policy and Practice, Elsevier, vol. 67(C), pages 127-140.
    18. Danaf, Mazen & Atasoy, Bilge & de Azevedo, Carlos Lima & Ding-Mastera, Jing & Abou-Zeid, Maya & Cox, Nathaniel & Zhao, Fang & Ben-Akiva, Moshe, 2019. "Context-aware stated preferences with smartphone-based travel surveys," Journal of choice modelling, Elsevier, vol. 31(C), pages 35-50.
    19. Andreas Nikiforiadis & Socrates Basbas & Foteini Mikiki & Aikaterini Oikonomou & Efrosyni Polymeroudi, 2021. "Pedestrians-Cyclists Shared Spaces Level of Service: Comparison of Methodologies and Critical Discussion," Sustainability, MDPI, vol. 13(1), pages 1-19, January.
    20. Mills, Gareth & White, Peter, 2018. "Evaluating the long-term impacts of bus-based park and ride," Research in Transportation Economics, Elsevier, vol. 69(C), pages 536-543.
    21. Guell, C. & Panter, J. & Jones, N.R. & Ogilvie, D., 2012. "Towards a differentiated understanding of active travel behaviour: Using social theory to explore everyday commuting," Social Science & Medicine, Elsevier, vol. 75(1), pages 233-239.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:15:p:8324-:d:601526. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.