IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i13p7484-d588632.html
   My bibliography  Save this article

Fique as a Sustainable Material and Thermal Insulation for Buildings: Study of Its Decomposition and Thermal Conductivity

Author

Listed:
  • Gabriel Fernando García Sánchez

    (Grupo de Investigación en Energía y Medio Ambiente (GIEMA), School of Mechanical Engineering, Universidad Industrial de Santander—UIS, Bucaramanga 680002, Colombia)

  • Rolando Enrique Guzmán López

    (Grupo de Investigación en Desarrollo Tecnológico, Mecatrónica Y Agroindustria (GIDETECHMA), Universidad Pontificia Bolivariana—UPB, Bucaramanga 680002, Colombia)

  • Roberto Alonso Gonzalez-Lezcano

    (Architecture and Design Department, Escuela Politécnica Superior, Campus Montepríncipe, Universidad San Pablo CEU, CEU Universities, Boadilla del Monte, 28668 Madrid, Spain)

Abstract

Buildings consume a large amount of energy during all stages of their life cycle. One of the most efficient ways to reduce their consumption is to use thermal insulation materials; however, these generally have negative effects on the environment and human health. Bio-insulations are presented as a good alternative solution to this problem, thus motivating the study of the properties of natural or recycled materials that could reduce energy consumption in buildings. Fique is a very important crop in Colombia. In order to contribute to our knowledge of the properties of its fibers as a thermal insulator, the measurement of its thermal conductivity is reported herein, employing equipment designed according to the ASTM C 177 standard and a kinetic study of its thermal decomposition from thermogravimetric data through the Coats–Redfern model-fitting method.

Suggested Citation

  • Gabriel Fernando García Sánchez & Rolando Enrique Guzmán López & Roberto Alonso Gonzalez-Lezcano, 2021. "Fique as a Sustainable Material and Thermal Insulation for Buildings: Study of Its Decomposition and Thermal Conductivity," Sustainability, MDPI, vol. 13(13), pages 1-12, July.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:13:p:7484-:d:588632
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/13/7484/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/13/7484/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Paris A. Fokaides & Rasa Apanaviciene & Jurgita Černeckiene & Andrius Jurelionis & Egle Klumbyte & Vilma Kriauciunaite-Neklejonoviene & Darius Pupeikis & Donatas Rekus & Jolanta Sadauskiene & Lina Sed, 2020. "Research Challenges and Advancements in the field of Sustainable Energy Technologies in the Built Environment," Sustainability, MDPI, vol. 12(20), pages 1-20, October.
    2. Slopiecka, Katarzyna & Bartocci, Pietro & Fantozzi, Francesco, 2012. "Thermogravimetric analysis and kinetic study of poplar wood pyrolysis," Applied Energy, Elsevier, vol. 97(C), pages 491-497.
    3. Cabeza, Luisa F. & Rincón, Lídia & Vilariño, Virginia & Pérez, Gabriel & Castell, Albert, 2014. "Life cycle assessment (LCA) and life cycle energy analysis (LCEA) of buildings and the building sector: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 394-416.
    4. Ingrao, Carlo & Lo Giudice, Agata & Bacenetti, Jacopo & Tricase, Caterina & Dotelli, Giovanni & Fiala, Marco & Siracusa, Valentina & Mbohwa, Charles, 2015. "Energy and environmental assessment of industrial hemp for building applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 29-42.
    5. Schiavoni, S. & D׳Alessandro, F. & Bianchi, F. & Asdrubali, F., 2016. "Insulation materials for the building sector: A review and comparative analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 988-1011.
    6. De Boeck, L. & Verbeke, S. & Audenaert, A. & De Mesmaeker, L., 2015. "Improving the energy performance of residential buildings: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 960-975.
    7. Liu, LiFang & Li, HongQiang & Lazzaretto, Andrea & Manente, Giovanni & Tong, ChunYi & Liu, QiBin & Li, NianPing, 2017. "The development history and prospects of biomass-based insulation materials for buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 912-932.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Leidy Rendón-Castrillón & Margarita Ramírez-Carmona & Carlos Ocampo-López & Valentina Pinedo-Rangel & Oscar Muñoz-Blandón & Eduardo Trujillo-Aramburo, 2022. "The Industrial Potential of Fique Cultivated in Colombia," Sustainability, MDPI, vol. 15(1), pages 1-30, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rabbat, Christelle & Awad, Sary & Villot, Audrey & Rollet, Delphine & Andrès, Yves, 2022. "Sustainability of biomass-based insulation materials in buildings: Current status in France, end-of-life projections and energy recovery potentials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    2. Arnas Majumder & Laura Canale & Costantino Carlo Mastino & Antonio Pacitto & Andrea Frattolillo & Marco Dell’Isola, 2021. "Thermal Characterization of Recycled Materials for Building Insulation," Energies, MDPI, vol. 14(12), pages 1-16, June.
    3. Elisa Di Giuseppe & Marco D’Orazio & Guangli Du & Claudio Favi & Sébastien Lasvaux & Gianluca Maracchini & Pierryves Padey, 2020. "A Stochastic Approach to LCA of Internal Insulation Solutions for Historic Buildings," Sustainability, MDPI, vol. 12(4), pages 1-35, February.
    4. Benedetti Miriam & Herce Carlos & Sforzini Matteo & Susca Tiziana & Toro Claudia, 2024. "Defining a sustainable supply chain for buildings Off-Site envelope thermal insulation solutions: proposal of a methodology to investigate opportunities based on a context analysis," Logistics, Supply Chain, Sustainability and Global Challenges, Sciendo, vol. 15(s1), pages 38-57.
    5. Jiang, Wei & Jin, Yang & Liu, Gongliang & Li, Qing & Li, Dong, 2023. "Passive nearly zero energy retrofits of rammed earth rural residential buildings based on energy efficiency and cost-effectiveness analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 180(C).
    6. Jie Gu & Cheng Tung Chong & Guo Ren Mong & Jo-Han Ng & William Woei Fong Chong, 2023. "Determination of Pyrolysis and Kinetics Characteristics of Chicken Manure Using Thermogravimetric Analysis Coupled with Particle Swarm Optimization," Energies, MDPI, vol. 16(4), pages 1-22, February.
    7. Luis M. López-Ochoa & Jesús Las-Heras-Casas & Luis M. López-González & César García-Lozano, 2020. "Energy Renovation of Residential Buildings in Cold Mediterranean Zones Using Optimized Thermal Envelope Insulation Thicknesses: The Case of Spain," Sustainability, MDPI, vol. 12(6), pages 1-34, March.
    8. Patricia González-Vallejo & Radu Muntean & Jaime Solís-Guzmán & Madelyn Marrero, 2020. "Carbon Footprint of Dwelling Construction in Romania and Spain. A Comparative Analysis with the OERCO2 Tool," Sustainability, MDPI, vol. 12(17), pages 1-22, August.
    9. Jin-Young Park & Byung-Soo Kim & Dong-Eun Lee, 2021. "Environmental and Cost Impact Assessment of Pavement Materials Using IBEES Method," Sustainability, MDPI, vol. 13(4), pages 1-20, February.
    10. Dzikuć Maciej, 2015. "Environmental management with the use of LCA in the Polish energy system," Management, Sciendo, vol. 19(1), pages 89-97, May.
    11. Qianqian Zhao & Junzhen Li & Roman Fediuk & Sergey Klyuev & Darya Nemova, 2021. "Benefit Evaluation Model of Prefabricated Buildings in Seasonally Frozen Regions," Energies, MDPI, vol. 14(21), pages 1-18, November.
    12. Anja Hansen & Jörn Budde & Annette Prochnow, 2016. "Resource Usage Strategies and Trade-Offs between Cropland Demand, Fossil Fuel Consumption, and Greenhouse Gas Emissions—Building Insulation as an Example," Sustainability, MDPI, vol. 8(7), pages 1-24, June.
    13. Chau, C.K. & Xu, J.M. & Leung, T.M. & Ng, W.Y., 2017. "Evaluation of the impacts of end-of-life management strategies for deconstruction of a high-rise concrete framed office building," Applied Energy, Elsevier, vol. 185(P2), pages 1595-1603.
    14. Ana Ferreira & Manuel Duarte Pinheiro & Jorge de Brito & Ricardo Mateus, 2022. "Embodied vs. Operational Energy and Carbon in Retail Building Shells: A Case Study in Portugal," Energies, MDPI, vol. 16(1), pages 1-23, December.
    15. Kong, Minjin & Lee, Minhyun & Kang, Hyuna & Hong, Taehoon, 2021. "Development of a framework for evaluating the contents and usability of the building life cycle assessment tool," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    16. Chou, Jui-Sheng & Tran, Duc-Son, 2018. "Forecasting energy consumption time series using machine learning techniques based on usage patterns of residential householders," Energy, Elsevier, vol. 165(PB), pages 709-726.
    17. Stanislav Shmelev & Harrison Roger Brook, 2021. "Macro Sustainability across Countries: Key Sector Environmentally Extended Input-Output Analysis," Sustainability, MDPI, vol. 13(21), pages 1-46, October.
    18. Gigliola Ausiello & Luca Di Girolamo & Antonio Marano, 2019. "Sustainable Requalification: Hemp, Raw Earth, Sun, and Wind for Energy Strategies in a Case Study in Naples, Italy," Sustainability, MDPI, vol. 11(21), pages 1-13, November.
    19. Hawks, M.A. & Cho, S., 2024. "Review and analysis of current solutions and trends for zero energy building (ZEB) thermal systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    20. Mastrucci, Alessio & Marvuglia, Antonino & Leopold, Ulrich & Benetto, Enrico, 2017. "Life Cycle Assessment of building stocks from urban to transnational scales: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 316-332.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:13:p:7484-:d:588632. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.