IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i13p7258-d584475.html
   My bibliography  Save this article

Sustainable Urban Drainage Systems in Spain: Analysis of the Research on SUDS Based on Climatology

Author

Listed:
  • Ana Isabel Abellán García

    (Escuela Técnica Superior de Ingeniería de Montes, Forestal y del Medio Natural, Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain)

  • Noelia Cruz Pérez

    (Departamento de Ingeniería Agraria, Náutica, Civil y Marítima, Universidad de La Laguna (ULL), 38206 Tenerife, Spain)

  • Juan C. Santamarta

    (Departamento de Ingeniería Agraria, Náutica, Civil y Marítima, Universidad de La Laguna (ULL), 38206 Tenerife, Spain)

Abstract

Sustainable urban drainage systems (SUDS), or urban green infrastructure for stormwater control, emerged for more sustainable management of runoff in cities and provide other benefits such as urban mitigation and adaptation to climate change. Research in Spain began a little over twenty years ago, which was later than in other European countries, and it began in a heterogeneous way, both in the SUDS typology and spatially within the peninsular geography. The main objective of this work has been to know through bibliographic review the state of the art of scientific research of these systems and their relationship with the different types of climates in the country. These structures have a complex and sensitive dependence on the climate, which in the Iberian Peninsula is mostly type B and C (according to the Köppen classification). This means little water availability for the vegetation of some SUDS, which can affect the performance of the technique. To date, for this work, research has focused mainly on green roofs, their capabilities as a sustainable construction tool, and the performance of different plant species used in these systems in arid climates. The next technique with the most real cases analyzed is permeable pavements in temperate climates, proving to be effective in reducing flows and runoff volumes. Other specific investigations have focused on the economic feasibility of installing rainwater harvesting systems for the laundry and the hydraulic performance of retention systems located specifically in the northeast of the Iberian Peninsula. On the contrary, few scientific articles have appeared that describe other SUDS with vegetation such as bioretention systems or green ditches, which are characteristic of sustainable cities, on which the weather can be a very limiting factor for their development.

Suggested Citation

  • Ana Isabel Abellán García & Noelia Cruz Pérez & Juan C. Santamarta, 2021. "Sustainable Urban Drainage Systems in Spain: Analysis of the Research on SUDS Based on Climatology," Sustainability, MDPI, vol. 13(13), pages 1-25, June.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:13:p:7258-:d:584475
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/13/7258/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/13/7258/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ignacio Andrés-Doménech & Sara Perales-Momparler & Adrián Morales-Torres & Ignacio Escuder-Bueno, 2018. "Hydrological Performance of Green Roofs at Building and City Scales under Mediterranean Conditions," Sustainability, MDPI, vol. 10(9), pages 1-15, August.
    2. Julian C. Abrahams & Stephen J. Coupe & Luis A. Sañudo-Fontaneda & Ulrich Schmutz, 2017. "The Brookside Farm Wetland Ecosystem Treatment (WET) System: A Low-Energy Methodology for Sewage Purification, Biomass Production (Yield), Flood Resilience and Biodiversity Enhancement," Sustainability, MDPI, vol. 9(1), pages 1-13, January.
    3. Carlos Rey-Mahía & Luis A. Sañudo-Fontaneda & Valerio C. Andrés-Valeri & Felipe Pedro Álvarez-Rabanal & Stephen John Coupe & Jorge Roces-García, 2019. "Evaluating the Thermal Performance of Wet Swales Housing Ground Source Heat Pump Elements through Laboratory Modelling," Sustainability, MDPI, vol. 11(11), pages 1-13, June.
    4. Chemisana, D. & Lamnatou, Chr., 2014. "Photovoltaic-green roofs: An experimental evaluation of system performance," Applied Energy, Elsevier, vol. 119(C), pages 246-256.
    5. Jorge Rodriguez-Hernandez & Valerio C. Andrés-Valeri & Miguel A. Calzada-Pérez & Ángel Vega-Zamanillo & Daniel Castro-Fresno, 2015. "Study of the Raveling Resistance of Porous Asphalt Pavements Used in Sustainable Drainage Systems Affected by Hydrocarbon Spills," Sustainability, MDPI, vol. 7(12), pages 1-11, December.
    6. Nancy Andrea Ramírez-Agudelo & Roger Porcar Anento & Miriam Villares & Elisabet Roca, 2020. "Nature-Based Solutions for Water Management in Peri-Urban Areas: Barriers and Lessons Learned from Implementation Experiences," Sustainability, MDPI, vol. 12(23), pages 1-36, November.
    7. Elisa Peñalvo-López & Javier Cárcel-Carrasco & David Alfonso-Solar & Iván Valencia-Salazar & Elias Hurtado-Pérez, 2020. "Study of the Improvement on Energy Efficiency for a Building in the Mediterranean Area by the Installation of a Green Roof System," Energies, MDPI, vol. 13(5), pages 1-14, March.
    8. Foudi, Sébastien & Spadaro, Joseph V. & Chiabai, Aline & Polanco-Martínez, Josué M. & Neumann, Marc B., 2017. "The climatic dependencies of urban ecosystem services from green roofs: Threshold effects and non-linearity," Ecosystem Services, Elsevier, vol. 24(C), pages 223-233.
    9. Andrea Nóblega Carriquiry & David Sauri & Hug March, 2020. "Community Involvement in the Implementation of Sustainable Urban Drainage Systems (SUDSs): The Case of Bon Pastor, Barcelona," Sustainability, MDPI, vol. 12(2), pages 1-19, January.
    10. Luca Locatelli & Maria Guerrero & Beniamino Russo & Eduardo Martínez-Gomariz & David Sunyer & Montse Martínez, 2020. "Socio-Economic Assessment of Green Infrastructure for Climate Change Adaptation in the Context of Urban Drainage Planning," Sustainability, MDPI, vol. 12(9), pages 1-18, May.
    11. Eduardo-Javier Elizondo-Martinez & Piergiorgio Tataranni & Jorge Rodriguez-Hernandez & Daniel Castro-Fresno, 2020. "Physical and Mechanical Characterization of Sustainable and Innovative Porous Concrete for Urban Pavements Containing Metakaolin," Sustainability, MDPI, vol. 12(10), pages 1-13, May.
    12. Coma, Julià & Pérez, Gabriel & Solé, Cristian & Castell, Albert & Cabeza, Luisa F., 2016. "Thermal assessment of extensive green roofs as passive tool for energy savings in buildings," Renewable Energy, Elsevier, vol. 85(C), pages 1106-1115.
    13. Lamnatou, Chr. & Chemisana, D., 2015. "A critical analysis of factors affecting photovoltaic-green roof performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 264-280.
    14. Valerio C. Andrés-Valeri & Mariana Marchioni & Luis Angel Sañudo-Fontaneda & Filippo Giustozzi & Gianfranco Becciu, 2016. "Laboratory Assessment of the Infiltration Capacity Reduction in Clogged Porous Mixture Surfaces," Sustainability, MDPI, vol. 8(8), pages 1-11, August.
    15. Marc Velasco & Beniamino Russo & Robert Monjo & César Paradinas & Slobodan Djordjević & Barry Evans & Eduardo Martínez-Gomariz & Maria Guerrero-Hidalga & Maria Adriana Cardoso & Rita Salgado Brito & D, 2020. "Increased Urban Resilience to Climate Change—Key Outputs from the RESCCUE Project," Sustainability, MDPI, vol. 12(23), pages 1-25, November.
    16. Ignacio Andrés-Doménech & Jose Anta & Sara Perales-Momparler & Jorge Rodriguez-Hernandez, 2021. "Sustainable Urban Drainage Systems in Spain: A Diagnosis," Sustainability, MDPI, vol. 13(5), pages 1-22, March.
    17. David Saurí & Xavier Garcia, 2020. "Non-conventional resources for the coming drought: the development of rainwater harvesting systems in a Mediterranean suburban area," Water International, Taylor & Francis Journals, vol. 45(2), pages 125-141, February.
    18. Pérez, Gabriel & Vila, Anna & Rincón, Lídia & Solé, Cristian & Cabeza, Luisa F., 2012. "Use of rubber crumbs as drainage layer in green roofs as potential energy improvement material," Applied Energy, Elsevier, vol. 97(C), pages 347-354.
    19. Amaya Novo & Joseba Bayon & Daniel Castro-Fresno & Jorge Rodriguez-Hernandez, 2013. "Temperature Performance of Different Pervious Pavements: Rainwater Harvesting for Energy Recovery Purposes," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(15), pages 5003-5016, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Antonio Menéndez Suárez-Inclán & Cristina Allende-Prieto & Jorge Roces-García & Juan P. Rodríguez-Sánchez & Luis A. Sañudo-Fontaneda & Carlos Rey-Mahía & Felipe P. Álvarez-Rabanal, 2022. "Development of a Multicriteria Scheme for the Identification of Strategic Areas for SUDS Implementation: A Case Study from Gijón, Spain," Sustainability, MDPI, vol. 14(5), pages 1-20, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stefano Cascone, 2019. "Green Roof Design: State of the Art on Technology and Materials," Sustainability, MDPI, vol. 11(11), pages 1-27, May.
    2. Ignacio Andrés-Doménech & Jose Anta & Sara Perales-Momparler & Jorge Rodriguez-Hernandez, 2021. "Sustainable Urban Drainage Systems in Spain: A Diagnosis," Sustainability, MDPI, vol. 13(5), pages 1-22, March.
    3. Bevilacqua, Piero & Bruno, Roberto & Arcuri, Natale, 2020. "Green roofs in a Mediterranean climate: energy performances based on in-situ experimental data," Renewable Energy, Elsevier, vol. 152(C), pages 1414-1430.
    4. Brunetti, Giuseppe & Porti, Michele & Piro, Patrizia, 2018. "Multi-level numerical and statistical analysis of the hygrothermal behavior of a non-vegetated green roof in a mediterranean climate," Applied Energy, Elsevier, vol. 221(C), pages 204-219.
    5. Vijayaraghavan, K., 2016. "Green roofs: A critical review on the role of components, benefits, limitations and trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 740-752.
    6. Ramshani, Mohammad & Li, Xueping & Khojandi, Anahita & Omitaomu, Olufemi, 2020. "An agent-based approach to study the diffusion rate and the effect of policies on joint placement of photovoltaic panels and green roof under climate change uncertainty," Applied Energy, Elsevier, vol. 261(C).
    7. Manso, Maria & Teotónio, Inês & Silva, Cristina Matos & Cruz, Carlos Oliveira, 2021. "Green roof and green wall benefits and costs: A review of the quantitative evidence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    8. Mansoureh Gholami & Alberto Barbaresi & Patrizia Tassinari & Marco Bovo & Daniele Torreggiani, 2020. "A Comparison of Energy and Thermal Performance of Rooftop Greenhouses and Green Roofs in Mediterranean Climate: A Hygrothermal Assessment in WUFI," Energies, MDPI, vol. 13(8), pages 1-15, April.
    9. Tang, Mingfang & Zheng, Xing, 2019. "Experimental study of the thermal performance of an extensive green roof on sunny summer days," Applied Energy, Elsevier, vol. 242(C), pages 1010-1021.
    10. Gianfranco Rizzo & Laura Cirrincione & Maria La Gennusa & Giorgia Peri & Gianluca Scaccianoce, 2023. "Green Roofs’ End of Life: A Literature Review," Energies, MDPI, vol. 16(2), pages 1-16, January.
    11. Fernando Alonso-Marroquin & Ghulam Qadir, 2023. "Synergy between Photovoltaic Panels and Green Roofs," Energies, MDPI, vol. 16(13), pages 1-17, July.
    12. Anik Gupta & Carlos J. Slebi-Acevedo & Esther Lizasoain-Arteaga & Jorge Rodriguez-Hernandez & Daniel Castro-Fresno, 2021. "Multi-Criteria Selection of Additives in Porous Asphalt Mixtures Using Mechanical, Hydraulic, Economic, and Environmental Indicators," Sustainability, MDPI, vol. 13(4), pages 1-20, February.
    13. Elisabeth Fassbender & Ferdinand Ludwig & Andreas Hild & Thomas Auer & Claudia Hemmerle, 2022. "Designing Transformation: Negotiating Solar and Green Strategies for the Sustainable Densification of Urban Neighbourhoods," Sustainability, MDPI, vol. 14(6), pages 1-19, March.
    14. Shafique, Muhammad & Kim, Reeho & Rafiq, Muhammad, 2018. "Green roof benefits, opportunities and challenges – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 757-773.
    15. Ramshani, Mohammad & Khojandi, Anahita & Li, Xueping & Omitaomu, Olufemi, 2020. "Optimal planning of the joint placement of photovoltaic panels and green roofs under climate change uncertainty," Omega, Elsevier, vol. 90(C).
    16. Cavadini, Giovan Battista & Cook, Lauren M., 2021. "Green and cool roof choices integrated into rooftop solar energy modelling," Applied Energy, Elsevier, vol. 296(C).
    17. Teodoro Semeraro & Aurelia Scarano & Riccardo Buccolieri & Angelo Santino & Eeva Aarrevaara, 2021. "Planning of Urban Green Spaces: An Ecological Perspective on Human Benefits," Land, MDPI, vol. 10(2), pages 1-26, January.
    18. Kim, Jimin & Hong, Taehoon & Jeong, Jaemin & Koo, Choongwan & Jeong, Kwangbok, 2016. "An optimization model for selecting the optimal green systems by considering the thermal comfort and energy consumption," Applied Energy, Elsevier, vol. 169(C), pages 682-695.
    19. Qinge Wang & He Cao & Huanan Yu & Luwei Zhao & Jinchan Fan & Yingqing Wang, 2020. "Experimental Study on Purification Effect of Biochemical Pool Model for Treatment of Pavement Runoff by Aquatic Plants," Sustainability, MDPI, vol. 12(6), pages 1-14, March.
    20. Beniamino Russo & Manuel Gómez Valentín & Jackson Tellez-Álvarez, 2021. "The Relevance of Grated Inlets within Surface Drainage Systems in the Field of Urban Flood Resilience. A Review of Several Experimental and Numerical Simulation Approaches," Sustainability, MDPI, vol. 13(13), pages 1-13, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:13:p:7258-:d:584475. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.