IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i4p2146-d500867.html
   My bibliography  Save this article

Multi-Criteria Selection of Additives in Porous Asphalt Mixtures Using Mechanical, Hydraulic, Economic, and Environmental Indicators

Author

Listed:
  • Anik Gupta

    (GITECO Research Group, University of Cantabria, 39005 Santander, Spain)

  • Carlos J. Slebi-Acevedo

    (GITECO Research Group, University of Cantabria, 39005 Santander, Spain)

  • Esther Lizasoain-Arteaga

    (GITECO Research Group, University of Cantabria, 39005 Santander, Spain
    TECNALIA, Basque Research and Technology Alliance (BRTA), Astondo Bidea, Edificio 700, 48160 Derio, Spain)

  • Jorge Rodriguez-Hernandez

    (GITECO Research Group, University of Cantabria, 39005 Santander, Spain)

  • Daniel Castro-Fresno

    (GITECO Research Group, University of Cantabria, 39005 Santander, Spain)

Abstract

Porous asphalt (PA) mixtures are more environmentally friendly but have lower durability than dense-graded mixtures. Additives can be incorporated into PA mixtures to enhance their mechanical strength; however, they may compromise the hydraulic characteristics, increase the total cost of pavement, and negatively affect the environment. In this paper, PA mixtures were produced with 5 different types of additives including 4 fibers and 1 filler. Their performances were compared with the reference mixtures containing virgin bitumen and polymer-modified bitumen. The performance of all mixes was assessed using: mechanical, hydraulic, economic, and environmental indicators. Then, the Delphi method was applied to compute the relative weights for the parameters in multi-criteria decision-making methods. Evaluation based on distance from average solution (EDAS), technique for order of the preference by similarity to ideal solution (TOPSIS), and weighted aggregated sum product assessment (WASPAS) were employed to rank the additives. According to the results obtained, aramid pulp displayed comparable and, for some parameters such as abrasion resistance, even better performance than polymer-modified bitumen, whereas cellulose fiber demonstrated the best performance regarding sustainability, due to economic and environmental benefits.

Suggested Citation

  • Anik Gupta & Carlos J. Slebi-Acevedo & Esther Lizasoain-Arteaga & Jorge Rodriguez-Hernandez & Daniel Castro-Fresno, 2021. "Multi-Criteria Selection of Additives in Porous Asphalt Mixtures Using Mechanical, Hydraulic, Economic, and Environmental Indicators," Sustainability, MDPI, vol. 13(4), pages 1-20, February.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:4:p:2146-:d:500867
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/4/2146/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/4/2146/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mohamed Marzouk & Eslam Mohammed Abdelkader & Mohamed El-zayat & Ahmed Aboushady, 2017. "Assessing Environmental Impact Indicators in Road Construction Projects in Developing Countries," Sustainability, MDPI, vol. 9(5), pages 1-21, May.
    2. Pedro Lastra-González & Irune Indacoechea-Vega & Miguel A. Calzada-Pérez & Daniel Castro-Fresno, 2020. "Recyclability Potential of Induction-Healable Porous Asphalt Mixtures," Sustainability, MDPI, vol. 12(23), pages 1-11, November.
    3. Jorge Rodriguez-Hernandez & Valerio C. Andrés-Valeri & Miguel A. Calzada-Pérez & Ángel Vega-Zamanillo & Daniel Castro-Fresno, 2015. "Study of the Raveling Resistance of Porous Asphalt Pavements Used in Sustainable Drainage Systems Affected by Hydrocarbon Spills," Sustainability, MDPI, vol. 7(12), pages 1-11, December.
    4. Ho Huu Loc & Pham Minh Duyen & Thomas J. Ballatore & Nguyen Hoang My Lan & Ashim Gupta, 2017. "Applicability of sustainable urban drainage systems: an evaluation by multi-criteria analysis," Environment Systems and Decisions, Springer, vol. 37(3), pages 332-343, September.
    5. Valerio C. Andrés-Valeri & Mariana Marchioni & Luis Angel Sañudo-Fontaneda & Filippo Giustozzi & Gianfranco Becciu, 2016. "Laboratory Assessment of the Infiltration Capacity Reduction in Clogged Porous Mixture Surfaces," Sustainability, MDPI, vol. 8(8), pages 1-11, August.
    6. Sara Lucía Jiménez Ariza & José Alejandro Martínez & Andrés Felipe Muñoz & Juan Pablo Quijano & Juan Pablo Rodríguez & Luis Alejandro Camacho & Mario Díaz-Granados, 2019. "A Multicriteria Planning Framework to Locate and Select Sustainable Urban Drainage Systems (SUDS) in Consolidated Urban Areas," Sustainability, MDPI, vol. 11(8), pages 1-33, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dominika Siwiec & Andrzej Pacana, 2021. "Model of Choice Photovoltaic Panels Considering Customers’ Expectations," Energies, MDPI, vol. 14(18), pages 1-32, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ana Isabel Abellán García & Noelia Cruz Pérez & Juan C. Santamarta, 2021. "Sustainable Urban Drainage Systems in Spain: Analysis of the Research on SUDS Based on Climatology," Sustainability, MDPI, vol. 13(13), pages 1-25, June.
    2. Le Duc Anh & Ho Huu Loc & Kim N. Irvine & Tran Thanh & Luong Quang Tuong, 2021. "The waterscape of groundwater exploitation for domestic uses in District 12, Ho Chi Minh City, Vietnam," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(5), pages 7652-7669, May.
    3. Daniel Mora-Melià & Carlos S. López-Aburto & Pablo Ballesteros-Pérez & Pedro Muñoz-Velasco, 2018. "Viability of Green Roofs as a Flood Mitigation Element in the Central Region of Chile," Sustainability, MDPI, vol. 10(4), pages 1-19, April.
    4. Wafaa Ali & Husna Takaijudin & Khamaruzaman Wan Yusof & Manal Osman & Abdurrasheed Sa’id Abdurrasheed, 2021. "The Common Approaches of Nitrogen Removal in Bioretention System," Sustainability, MDPI, vol. 13(5), pages 1-19, February.
    5. Leonardo Sierra & Felipe Araya & Víctor Yepes, 2021. "Consideration of Uncertainty and Multiple Disciplines in the Determination of Sustainable Criteria for Rural Roads Using Neutrosophic Logic," Sustainability, MDPI, vol. 13(17), pages 1-15, September.
    6. Jaewon Yoo & Tan Hung Nguyen & Eungu Lee & Yunje Lee & Jaehun Ahn, 2020. "Measurement of Permeability in Horizontal Direction of Open-Graded Friction Course with Rutting," Sustainability, MDPI, vol. 12(16), pages 1-15, August.
    7. Jing Jin & Duozhang Chen, 2022. "Research on the Impact of the County-to-District Reform on Environmental Pollution in China," Sustainability, MDPI, vol. 14(11), pages 1-12, May.
    8. Penghui Wen & Chaohui Wang & Liang Song & Liangliang Niu & Haoyu Chen, 2021. "Durability and Sustainability of Cement-Stabilized Materials Based on Utilization of Waste Materials: A Literature Review," Sustainability, MDPI, vol. 13(21), pages 1-27, October.
    9. Lena Simperler & Martina Glanzer & Thomas Ertl & Florian Kretschmer, 2020. "Identification and Pre-Assessment of Former Watercourses to Support Urban Stormwater Management," Sustainability, MDPI, vol. 12(14), pages 1-14, July.
    10. Inmaculada Picon-Cabrera & Jesus Maria Garcia-Gago & Luis Javier Sanchez-Aparicio & Pablo Rodriguez-Gonzalvez & Diego Gonzalez-Aguilera, 2020. "On the Use of Historical Flights for the Urban Growth Analysis of Cities Through Time: The Case Study of Avila (Spain)," Sustainability, MDPI, vol. 12(11), pages 1-17, June.
    11. Zachary A. Collier & James H. Lambert & Igor Linkov, 2017. "Advances in life cycle analysis, econometrics, optimization, R&D policy, and health decision making," Environment Systems and Decisions, Springer, vol. 37(3), pages 241-242, September.
    12. Jaehun Ahn & Aryssa Kathreen Marcaida & Yoongeun Lee & Jongwon Jung, 2018. "Development of Test Equipment for Evaluating Hydraulic Conductivity of Permeable Block Pavements," Sustainability, MDPI, vol. 10(7), pages 1-16, July.
    13. Mariana Marchioni & Roberto Fedele & Anita Raimondi & John Sansalone & Gianfranco Becciu, 2022. "Permeable Asphalt Hydraulic Conductivity and Particulate Matter Separation With XRT," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(6), pages 1879-1895, April.
    14. Elvira Nicolini & Antonella Mamì, 2023. "Circular Water Management in Public Space—Experimental Feasibility Studies in Different Urban Contexts," Sustainability, MDPI, vol. 15(15), pages 1-17, August.
    15. Juliana Uribe-Aguado & Sara L. Jiménez-Ariza & María N. Torres & Natalia A. Bernal & Mónica M. Giraldo-González & Juan P. Rodríguez, 2022. "A SUDS Planning Decision Support Tool to Maximize Ecosystem Services," Sustainability, MDPI, vol. 14(8), pages 1-22, April.
    16. Giampiero Trunzo & Laura Moretti & Antonio D’Andrea, 2019. "Life Cycle Analysis of Road Construction and Use," Sustainability, MDPI, vol. 11(2), pages 1-13, January.
    17. Byung-Hyun Ryu & Sojeong Lee & Ilhan Chang, 2020. "Pervious Pavement Blocks Made from Recycled Polyethylene Terephthalate (PET): Fabrication and Engineering Properties," Sustainability, MDPI, vol. 12(16), pages 1-10, August.
    18. Giuseppe Sollazzo & Sonia Longo & Maurizio Cellura & Clara Celauro, 2020. "Impact Analysis Using Life Cycle Assessment of Asphalt Production from Primary Data," Sustainability, MDPI, vol. 12(24), pages 1-21, December.
    19. Aryssa Kathreen Marcaida & Tan Hung Nguyen & Jaehun Ahn, 2018. "Investigation of Particle-Related Clogging of Sustainable Concrete Pavements," Sustainability, MDPI, vol. 10(12), pages 1-12, December.
    20. Pedro Lastra-González & Irune Indacoechea-Vega & Miguel A. Calzada-Pérez & Daniel Castro-Fresno, 2020. "Recyclability Potential of Induction-Healable Porous Asphalt Mixtures," Sustainability, MDPI, vol. 12(23), pages 1-11, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:4:p:2146-:d:500867. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.