IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i5p2575-d507359.html
   My bibliography  Save this article

The Common Approaches of Nitrogen Removal in Bioretention System

Author

Listed:
  • Wafaa Ali

    (Department of Civil and Environmental Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak 32610, Malaysia)

  • Husna Takaijudin

    (Department of Civil and Environmental Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak 32610, Malaysia)

  • Khamaruzaman Wan Yusof

    (Department of Civil and Environmental Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak 32610, Malaysia)

  • Manal Osman

    (Department of Civil and Environmental Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak 32610, Malaysia)

  • Abdurrasheed Sa’id Abdurrasheed

    (Department of Civil and Environmental Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak 32610, Malaysia)

Abstract

Bioretention is considered one of the best management practices (BMPS) for managing stormwater quality and quantity. The bioretention system has proven good performance in removing total suspended solids, oil, and heavy metals. The nitrogen (N) removal efficiency of the bioretention system is insufficient, however, due to the complex forms of nitrogen. Therefore, this paper aims to review recent enhancement approaches to nitrogen (N) removal and to discuss the factors influencing bioretention efficiency. To improve bioretention efficiency, several factors should be considered when designing bioretention systems, including nitrogen concentration, climate factors, and hydrological factors. Further, soil and plant selection should be appropriate for environmental conditions. Three design improvement approaches have been reviewed. The first is the inclusion of a saturated zone (SZ), which has been used widely. The SZ is shown to have the best performance in nitrogen removal. The second approach (which is less popular) is the usage of additives in the form of a mixture with soil media or as a separated layer. This concept is intended to be applied in tropical regions with wet soil conditions and a short dry period. The third approach combines the previous two approaches (enhanced filter media and applying a SZ). This approach is more efficient and has recently attracted more attention. This study suggests that further studies on the third approach should be carried out. Applying amendment material through filter media and integrating it with SZ provides appropriate conditions to complete the nitrogen cycle. This approach is considered a promising method to enhance nitrogen removal. In general, the bioretention system offers a promising tool for improving stormwater quality.

Suggested Citation

  • Wafaa Ali & Husna Takaijudin & Khamaruzaman Wan Yusof & Manal Osman & Abdurrasheed Sa’id Abdurrasheed, 2021. "The Common Approaches of Nitrogen Removal in Bioretention System," Sustainability, MDPI, vol. 13(5), pages 1-19, February.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:5:p:2575-:d:507359
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/5/2575/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/5/2575/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rajendra Prasad Singh & Fei Zhao & Qian Ji & Jothivel Saravanan & Dafang Fu, 2019. "Design and Performance Characterization of Roadside Bioretention Systems," Sustainability, MDPI, vol. 11(7), pages 1-13, April.
    2. Sara Lucía Jiménez Ariza & José Alejandro Martínez & Andrés Felipe Muñoz & Juan Pablo Quijano & Juan Pablo Rodríguez & Luis Alejandro Camacho & Mario Díaz-Granados, 2019. "A Multicriteria Planning Framework to Locate and Select Sustainable Urban Drainage Systems (SUDS) in Consolidated Urban Areas," Sustainability, MDPI, vol. 11(8), pages 1-33, April.
    3. Saraswat, Chitresh & Kumar, Pankaj & Mishra, Binaya Kumar, 2016. "Assessment of stormwater runoff management practices and governance under climate change and urbanization: An analysis of Bangkok, Hanoi and Tokyo," Environmental Science & Policy, Elsevier, vol. 64(C), pages 101-117.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jingming Qian & Dafang Fu & Tong Zhou & Rajendra Prasad Singh & Shujiang Miao, 2022. "Impact of Environmental Factors and System Structure on Bioretention Evaporation Efficiency," Sustainability, MDPI, vol. 14(3), pages 1-13, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Manal Osman & Khamaruzaman Wan Yusof & Husna Takaijudin & Hui Weng Goh & Marlinda Abdul Malek & Nor Ariza Azizan & Aminuddin Ab. Ghani & Abdurrasheed Sa’id Abdurrasheed, 2019. "A Review of Nitrogen Removal for Urban Stormwater Runoff in Bioretention System," Sustainability, MDPI, vol. 11(19), pages 1-21, September.
    2. Gargiulo, Carmela & Battarra, Rosaria & Tremiterra, Maria Rosa, 2020. "Coastal areas and climate change: A decision support tool for implementing adaptation measures," Land Use Policy, Elsevier, vol. 91(C).
    3. Mahbubur Meenar & Megan Heckert & Deepti Adlakha, 2022. "“Green Enough Ain’t Good Enough:” Public Perceptions and Emotions Related to Green Infrastructure in Environmental Justice Communities," IJERPH, MDPI, vol. 19(3), pages 1-17, January.
    4. Lena Simperler & Martina Glanzer & Thomas Ertl & Florian Kretschmer, 2020. "Identification and Pre-Assessment of Former Watercourses to Support Urban Stormwater Management," Sustainability, MDPI, vol. 12(14), pages 1-14, July.
    5. Inmaculada Picon-Cabrera & Jesus Maria Garcia-Gago & Luis Javier Sanchez-Aparicio & Pablo Rodriguez-Gonzalvez & Diego Gonzalez-Aguilera, 2020. "On the Use of Historical Flights for the Urban Growth Analysis of Cities Through Time: The Case Study of Avila (Spain)," Sustainability, MDPI, vol. 12(11), pages 1-17, June.
    6. Bello, Al-Amin Danladi & Haniffah, Mohd Ridza Mohd, 2021. "Modelling the effects of urbanization on nutrients pollution for prospective management of a tropical watershed: A case study of Skudai River watershed," Ecological Modelling, Elsevier, vol. 459(C).
    7. Elvira Nicolini & Antonella Mamì, 2023. "Circular Water Management in Public Space—Experimental Feasibility Studies in Different Urban Contexts," Sustainability, MDPI, vol. 15(15), pages 1-17, August.
    8. Juliana Uribe-Aguado & Sara L. Jiménez-Ariza & María N. Torres & Natalia A. Bernal & Mónica M. Giraldo-González & Juan P. Rodríguez, 2022. "A SUDS Planning Decision Support Tool to Maximize Ecosystem Services," Sustainability, MDPI, vol. 14(8), pages 1-22, April.
    9. Anik Gupta & Carlos J. Slebi-Acevedo & Esther Lizasoain-Arteaga & Jorge Rodriguez-Hernandez & Daniel Castro-Fresno, 2021. "Multi-Criteria Selection of Additives in Porous Asphalt Mixtures Using Mechanical, Hydraulic, Economic, and Environmental Indicators," Sustainability, MDPI, vol. 13(4), pages 1-20, February.
    10. Yan Tu & Kai Chen & Huayi Wang & Zongmin Li, 2020. "Regional Water Resources Security Evaluation Based on a Hybrid Fuzzy BWM-TOPSIS Method," IJERPH, MDPI, vol. 17(14), pages 1-24, July.
    11. Priscila Barros Ramalho Alves & Iana Alexandra Alves Rufino & Patrícia Hermínio Cunha Feitosa & Slobodan Djordjević & Akbar Javadi, 2020. "Land-Use and Legislation-Based Methodology for the Implementation of Sustainable Drainage Systems in the Semi-Arid Region of Brazil," Sustainability, MDPI, vol. 12(2), pages 1-23, January.
    12. Sado-Inamura, Yukako & Fukushi, Kensuke, 2019. "Empirical analysis of flood risk perception using historical data in Tokyo," Land Use Policy, Elsevier, vol. 82(C), pages 13-29.
    13. Antonio Menéndez Suárez-Inclán & Cristina Allende-Prieto & Jorge Roces-García & Juan P. Rodríguez-Sánchez & Luis A. Sañudo-Fontaneda & Carlos Rey-Mahía & Felipe P. Álvarez-Rabanal, 2022. "Development of a Multicriteria Scheme for the Identification of Strategic Areas for SUDS Implementation: A Case Study from Gijón, Spain," Sustainability, MDPI, vol. 14(5), pages 1-20, March.
    14. Sabina Kordana & Daniel Słyś, 2020. "Decision Criteria for the Development of Stormwater Management Systems in Poland," Resources, MDPI, vol. 9(2), pages 1-21, February.
    15. Buddhi Wijesiri & Erick Bandala & An Liu & Ashantha Goonetilleke, 2020. "A Framework for Stormwater Quality Modelling under the Effects of Climate Change to Enhance Reuse," Sustainability, MDPI, vol. 12(24), pages 1-12, December.
    16. Shokhrukh-Mirzo Jalilov & Mohamed Kefi & Pankaj Kumar & Yoshifumi Masago & Binaya Kumar Mishra, 2018. "Sustainable Urban Water Management: Application for Integrated Assessment in Southeast Asia," Sustainability, MDPI, vol. 10(1), pages 1-22, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:5:p:2575-:d:507359. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.