IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v17y2020i14p4987-d383012.html
   My bibliography  Save this article

Regional Water Resources Security Evaluation Based on a Hybrid Fuzzy BWM-TOPSIS Method

Author

Listed:
  • Yan Tu

    (School of Safety Science and Emergency Management, Wuhan University of Technology, Wuhan 430070, China)

  • Kai Chen

    (School of Safety Science and Emergency Management, Wuhan University of Technology, Wuhan 430070, China)

  • Huayi Wang

    (School of Safety Science and Emergency Management, Wuhan University of Technology, Wuhan 430070, China)

  • Zongmin Li

    (School of Business, Sichuan University, Chengdu 610065, China)

Abstract

Nowadays, water resource security is becoming increasingly prominent, and this problem is a primary bottleneck restricting China’s future sustainable development. It is difficult to come to a unified conclusion on water resources security, and applications of highly feasible evaluation methods are lacking in practice. In this paper, a novel evaluation methodology is proposed for regional water resources security evaluation. First, water security is divided into two aspects: water quantity security and water quality security. The disposal rate of harmless household garbage, the excellent water resources proportion, and the functional water body loss proportion are creatively considered as indicators of water quality security in the evaluation system. In addition, a Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) method is used to evaluate the water security levels in different regions. For distinguishing the importance of different indicators, a Best–Worst Method (BWM) is employed to calculate the indicator weights, as triangular fuzzy linguistic sets can more flexibly describe the preferences of decision makers (DMs) regarding the indicators; therefore, it is embedded in BWM to determine indicator weights. Moreover, the fuzzy BWM-TOPSIS method is applied to evaluate the water security levels of six regions in North China, a comparison analysis with the equal weight TOPSIS method as well as the fuzzy BWM-AHP method, and a sensitivity analysis for indicator weights are presented to illustrate the effectiveness of this proposed method. Finally, some suggestions based on the evaluation results are given for effective and rational utilization of water resources in North China.

Suggested Citation

  • Yan Tu & Kai Chen & Huayi Wang & Zongmin Li, 2020. "Regional Water Resources Security Evaluation Based on a Hybrid Fuzzy BWM-TOPSIS Method," IJERPH, MDPI, vol. 17(14), pages 1-24, July.
  • Handle: RePEc:gam:jijerp:v:17:y:2020:i:14:p:4987-:d:383012
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/17/14/4987/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/17/14/4987/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xiao-jun Wang & Jian-yun Zhang & Juan Gao & Shamsuddin Shahid & Xing-hui Xia & Zhi Geng & Li Tang, 2018. "The new concept of water resources management in China: ensuring water security in changing environment," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 20(2), pages 897-909, April.
    2. Saraswat, Chitresh & Kumar, Pankaj & Mishra, Binaya Kumar, 2016. "Assessment of stormwater runoff management practices and governance under climate change and urbanization: An analysis of Bangkok, Hanoi and Tokyo," Environmental Science & Policy, Elsevier, vol. 64(C), pages 101-117.
    3. U. Pascal Onu & Quan Xie & Ling Xu, 2017. "A Fuzzy TOPSIS model Framework for Ranking Sustainable Water Supply Alternatives," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(9), pages 2579-2593, July.
    4. Kaize Zhang & Juqin Shen & Ran He & Bihang Fan & Han Han, 2019. "Dynamic Analysis of the Coupling Coordination Relationship between Urbanization and Water Resource Security and Its Obstacle Factor," IJERPH, MDPI, vol. 16(23), pages 1-16, November.
    5. Peipei You & Sen Guo & Haoran Zhao & Huiru Zhao, 2017. "Operation Performance Evaluation of Power Grid Enterprise Using a Hybrid BWM-TOPSIS Method," Sustainability, MDPI, vol. 9(12), pages 1-15, December.
    6. Christopher Kanyesigye & Sara J. Marks & Juliet Nakanjako & Frank Kansiime & Giuliana Ferrero, 2019. "Status of Water Safety Plan Development and Implementation in Uganda," IJERPH, MDPI, vol. 16(21), pages 1-17, October.
    7. Yuangang Li & Maohua Sun & Guanghui Yuan & Yujing Liu, 2019. "Evaluation Methods of Water Environment Safety and Their Application to the Three Northeast Provinces of China," Sustainability, MDPI, vol. 11(18), pages 1-16, September.
    8. Parneet Paul & Ameena Kulaib Al Tenaiji & Nuhu Braimah, 2016. "A Review of the Water and Energy Sectors and the Use of a Nexus Approach in Abu Dhabi," IJERPH, MDPI, vol. 13(4), pages 1-15, March.
    9. Gu, Shuzhong & Jenkins, Alan & Gao, Shi-Ji & Lu, Yonglong & Li, Hong & Li, Yuanyuan & Ferrier, Robert C. & Bailey, Mark & Wang, Yiwen & Zhang, Yuan & Qi, Xuebin & Yu, Lili & Ding, Liuqian & Daniell, T, 2017. "Ensuring water resource security in China; the need for advances in evidence-based policy to support sustainable management," Environmental Science & Policy, Elsevier, vol. 75(C), pages 65-69.
    10. Rezaei, Jafar, 2016. "Best-worst multi-criteria decision-making method: Some properties and a linear model," Omega, Elsevier, vol. 64(C), pages 126-130.
    11. Rezaei, Jafar, 2015. "Best-worst multi-criteria decision-making method," Omega, Elsevier, vol. 53(C), pages 49-57.
    12. Edmund C. Merem & Sudha Yerramilli & Yaw A. Twumasi & Joan M. Wesley & Bennetta Robinson & Chandra Richardson, 2011. "The Applications of GIS in the Analysis of the Impacts of Human Activities on South Texas Watersheds," IJERPH, MDPI, vol. 8(6), pages 1-29, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuanhuan Zheng & Chunxue Yu & Huabin Zhou & Jiannan Xiao, 2021. "Spatial Variations and Influencing Factors of River Networks in River Basins of China," IJERPH, MDPI, vol. 18(22), pages 1-14, November.
    2. Xiaoyan Zhang & Juqin Shen & Fuhua Sun & Shou Wang & Shuxuan Zhang & Jian Chen, 2022. "Allocation of Flood Drainage Rights in Watershed Using a Hybrid FBWM-Grey-TOPSIS Method: A Case Study of the Jiangsu Section of the Sunan Canal, China," IJERPH, MDPI, vol. 19(13), pages 1-22, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dragan Pamučar & Fatih Ecer & Goran Cirovic & Melfi A. Arlasheedi, 2020. "Application of Improved Best Worst Method (BWM) in Real-World Problems," Mathematics, MDPI, vol. 8(8), pages 1-19, August.
    2. Mališa Žižović & Dragan Pamučar & Goran Ćirović & Miodrag M. Žižović & Boža D. Miljković, 2020. "A Model for Determining Weight Coefficients by Forming a Non-Decreasing Series at Criteria Significance Levels (NDSL)," Mathematics, MDPI, vol. 8(5), pages 1-18, May.
    3. Mu-Hsin Chang & James J. H. Liou & Huai-Wei Lo, 2019. "A Hybrid MCDM Model for Evaluating Strategic Alliance Partners in the Green Biopharmaceutical Industry," Sustainability, MDPI, vol. 11(15), pages 1-20, July.
    4. Sen Guo & Wenyue Zhang & Xiao Gao, 2020. "Business Risk Evaluation of Electricity Retail Company in China Using a Hybrid MCDM Method," Sustainability, MDPI, vol. 12(5), pages 1-21, March.
    5. Fumin Deng & Yanjie Li & Huirong Lin & Jinrui Miao & Xuedong Liang, 2020. "A BWM-TOPSIS Hazardous Waste Inventory Safety Risk Evaluation," IJERPH, MDPI, vol. 17(16), pages 1-18, August.
    6. Mi, Xiaomei & Tang, Ming & Liao, Huchang & Shen, Wenjing & Lev, Benjamin, 2019. "The state-of-the-art survey on integrations and applications of the best worst method in decision making: Why, what, what for and what's next?," Omega, Elsevier, vol. 87(C), pages 205-225.
    7. Haoran Zhao & Huiru Zhao & Sen Guo, 2018. "Comprehensive Performance Evaluation of Electricity Grid Corporations Employing a Novel MCDM Model," Sustainability, MDPI, vol. 10(7), pages 1-23, June.
    8. Maghsoud Amiri & Mohammad Hashemi-Tabatabaei & Mohammad Ghahremanloo & Mehdi Keshavarz-Ghorabaee & Edmundas Kazimieras Zavadskas & Arturas Kaklauskas, 2021. "Evaluating Life Cycle of Buildings Using an Integrated Approach Based on Quantitative-Qualitative and Simplified Best-Worst Methods (QQM-SBWM)," Sustainability, MDPI, vol. 13(8), pages 1-28, April.
    9. Pei-Yao Su & Jing-Hong Guo & Qi-Gan Shao, 2021. "Construction of the Quality Evaluation Index System of MOOC Platforms Based on the User Perspective," Sustainability, MDPI, vol. 13(20), pages 1-18, October.
    10. James J. H. Liou & Perry C. Y. Liu & Huai-Wei Lo, 2020. "A Failure Mode Assessment Model Based on Neutrosophic Logic for Switched-Mode Power Supply Risk Analysis," Mathematics, MDPI, vol. 8(12), pages 1-19, December.
    11. Junnan Wu & Xin Liu & Dianqi Pan & Yichen Zhang & Jiquan Zhang & Kai Ke, 2023. "Research on Safety Evaluation of Municipal Sewage Treatment Plant Based on Improved Best-Worst Method and Fuzzy Comprehensive Method," Sustainability, MDPI, vol. 15(11), pages 1-15, May.
    12. Liang, Fuqi & Brunelli, Matteo & Rezaei, Jafar, 2020. "Consistency issues in the best worst method: Measurements and thresholds," Omega, Elsevier, vol. 96(C).
    13. Pushparenu Bhattacharjee & Syed Abou Iltaf Hussain & V. Dey & U. K. Mandal, 2023. "Failure mode and effects analysis for submersible pump component using proportionate risk assessment model: a case study in the power plant of Agartala," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(5), pages 1778-1798, October.
    14. Salimi, Negin & Rezaei, Jafar, 2018. "Evaluating firms’ R&D performance using best worst method," Evaluation and Program Planning, Elsevier, vol. 66(C), pages 147-155.
    15. Yuanxin Liu & FengYun Li & Yi Wang & Xinhua Yu & Jiahai Yuan & Yuwei Wang, 2018. "Assessing the Environmental Impact Caused by Power Grid Projects in High Altitude Areas Based on BWM and Vague Sets Techniques," Sustainability, MDPI, vol. 10(6), pages 1-20, May.
    16. Ravindra Singh Saluja & Varinder Singh, 2023. "Attribute-based characterization, coding, and selection of joining processes using a novel MADM approach," OPSEARCH, Springer;Operational Research Society of India, vol. 60(2), pages 616-655, June.
    17. Ghadimi, Pezhman & Donnelly, Oisin & Sar, Kubra & Wang, Chao & Azadnia, Amir Hossein, 2022. "The successful implementation of industry 4.0 in manufacturing: An analysis and prioritization of risks in Irish industry," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
    18. Junli Zhang & Guoteng Wang & Zheng Xu & Zheren Zhang, 2022. "A Comprehensive Evaluation Method and Strengthening Measures for AC/DC Hybrid Power Grids," Energies, MDPI, vol. 15(12), pages 1-20, June.
    19. Hamzeh Soltanali & Mehdi Khojastehpour & Siamak Kheybari, 2023. "Evaluating the critical success factors for maintenance management in agro-industries using multi-criteria decision-making techniques," Operations Management Research, Springer, vol. 16(2), pages 949-968, June.
    20. Yossi Hadad & Baruch Keren & Dima Alberg, 2023. "An Expert System for Ranking and Matching Electric Vehicles to Customer Specifications and Requirements," Energies, MDPI, vol. 16(11), pages 1-18, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:17:y:2020:i:14:p:4987-:d:383012. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.