IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i12p6803-d576057.html
   My bibliography  Save this article

Trends and Interannual Variability of Extreme Rainfall Indices over Cameroon

Author

Listed:
  • Derbetini A. Vondou

    (Laboratory for Environmental Modelling and Atmospheric Physics, Department of Physics, University of Yaounde 1, Yaounde P.O. Box 812, Cameroon)

  • Guy Merlin Guenang

    (Laboratory for Environmental Modelling and Atmospheric Physics, Department of Physics, University of Yaounde 1, Yaounde P.O. Box 812, Cameroon
    L2MPS, Department of Physics, Faculty of Science, University of Dschang, Dschang P.O. Box 96, Cameroon)

  • Tchotchou Lucie Angennes Djiotang

    (Laboratory for Environmental Modelling and Atmospheric Physics, Department of Physics, University of Yaounde 1, Yaounde P.O. Box 812, Cameroon)

  • Pierre Honore Kamsu-Tamo

    (Laboratory for Environmental Modelling and Atmospheric Physics, Department of Physics, University of Yaounde 1, Yaounde P.O. Box 812, Cameroon)

Abstract

Central African citizens are highly vulnerable to extreme hydroclimatic events due to excess precipitation or to dry spells. This study makes use of CHIRPS precipitation data gridded at 0.05° × 0.05° resolution and extended from 1981 to 2019 to analyze spatial variabilities and trends of six extreme precipitation indices defined by the Expert Team on Climate Change Detection and Indices (ETCCDI) over Cameroon. They are the number of wet days (RR1), the simple daily intensity index (SDII), the annual total precipitation from days greater than the 95th percentile (R95ptot), the maximum number of consecutive wet days (CWD), the maximum number of consecutive dry days (CDD), the number of very heavy rainfall (RR20). The standard precipitation index (SPI) time series were also examined in the five agro-climatic regions of the domain. The pattern of annual precipitation was first checked over the entire domain. We obtain a well-known pattern showing a decreased precipitation northward with the highest values around the Atlantic Ocean coast. The analysis shows that all indices represent patterns approximately similar to that of annual rainfall except CDD where the spatial south-north gradient is reversed. RR20 shows the lowest spatial variability. Trend study of RR1 indicates negative values south of the domain and predominated positive values in the northern part, where CDD, on the contrary, shows a decreased trend. The highest trends are observed in the northernmost area for CWD and around the coast for SDII and R95ptot. SPI time series indicate an alternative dry and wet period and the years between 1990 and 2000 witnessed more annual wet conditions. Such a study is very important in this domain where variabilities of climatic components are very high due to climate change impact and diversified relief. The results can serve as a reference for agricultural activity, hydropower management, civil engineering, planning of economic activities and can contribute to the understanding of the climate system in Cameroon.

Suggested Citation

  • Derbetini A. Vondou & Guy Merlin Guenang & Tchotchou Lucie Angennes Djiotang & Pierre Honore Kamsu-Tamo, 2021. "Trends and Interannual Variability of Extreme Rainfall Indices over Cameroon," Sustainability, MDPI, vol. 13(12), pages 1-12, June.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:12:p:6803-:d:576057
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/12/6803/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/12/6803/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Michela Biasutti, 2019. "Rainfall trends in the African Sahel: Characteristics, processes, and causes," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 10(4), July.
    2. P. Moudi Igri & Roméo S. Tanessong & D. A. Vondou & Jagabandhu Panda & Adamou Garba & F. Kamga Mkankam & A. Kamga, 2018. "Assessing the performance of WRF model in predicting high-impact weather conditions over Central and Western Africa: an ensemble-based approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 93(3), pages 1565-1587, September.
    3. Xuebin Zhang & Lisa Alexander & Gabriele C. Hegerl & Philip Jones & Albert Klein Tank & Thomas C. Peterson & Blair Trewin & Francis W. Zwiers, 2011. "Indices for monitoring changes in extremes based on daily temperature and precipitation data," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 2(6), pages 851-870, November.
    4. Thierry C. Fotso-Nguemo & Ismaïla Diallo & Moussa Diakhaté & Derbetini A. Vondou & Mamadou L. Mbaye & Andreas Haensler & Amadou T. Gaye & Clément Tchawoua, 2019. "Projected changes in the seasonal cycle of extreme rainfall events from CORDEX simulations over Central Africa," Climatic Change, Springer, vol. 155(3), pages 339-357, August.
    5. Ibrahim Njouenwet & Derbetini Appolinaire Vondou & Elisabeth Fita Dassou & Brian Odhiambo Ayugi & Robert Nouayou, 2021. "Assessment of agricultural drought during crop-growing season in the Sudano–Sahelian region of Cameroon," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(1), pages 561-577, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fanta F. Jabbi & Yu’e Li & Tianyi Zhang & Wang Bin & Waseem Hassan & You Songcai, 2021. "Impacts of Temperature Trends and SPEI on Yields of Major Cereal Crops in the Gambia," Sustainability, MDPI, vol. 13(22), pages 1-19, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kenny Thiam Choy Lim Kam Sian & Charles Onyutha & Brian Odhiambo Ayugi & Ibrahim Njouenwet & Victor Ongoma, 2024. "Drought severity across Africa: a comparative analysis of multi-source precipitation datasets," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(11), pages 10241-10271, September.
    2. Antoine Leblois, 2021. "Mitigating the impact of bad rainy seasons in poor agricultural regions to tackle deforestation," Post-Print hal-03111007, HAL.
    3. Binglin Zhang & Songbai Song & Huimin Wang & Tianli Guo & Yibo Ding, 2025. "Evaluation of the performance of CMIP6 models in simulating extreme precipitation and its projected changes in global climate regions," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 121(2), pages 1737-1763, January.
    4. Tazen Fowé & Roland Yonaba & Lawani Adjadi Mounirou & Etienne Ouédraogo & Boubacar Ibrahim & Dial Niang & Harouna Karambiri & Hamma Yacouba, 2023. "From meteorological to hydrological drought: a case study using standardized indices in the Nakanbe River Basin, Burkina Faso," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 119(3), pages 1941-1965, December.
    5. Anil Aryal & Jun Magome & Hiroshi Ishidaira & Kazuyoshi Souma & Umesh Chaudhary, 2025. "Evaluating the extreme precipitation indices and their impacts in the Volta River Basin in West Africa from a nexus perspective," Sustainability Nexus Forum, Springer, vol. 33(1), pages 1-15, December.
    6. Traore, Seydou & Zhang, Lei & Guven, Aytac & Fipps, Guy, 2020. "Rice yield response forecasting tool (YIELDCAST) for supporting climate change adaptation decision in Sahel," Agricultural Water Management, Elsevier, vol. 239(C).
    7. Mohammed Achite & Gokmen Ceribasi & Ahmet Iyad Ceyhunlu & Andrzej Wałęga & Tommaso Caloiero, 2021. "The Innovative Polygon Trend Analysis (IPTA) as a Simple Qualitative Method to Detect Changes in Environment—Example Detecting Trends of the Total Monthly Precipitation in Semiarid Area," Sustainability, MDPI, vol. 13(22), pages 1-17, November.
    8. Helbling, Marc & Auer, Daniel & Meierrieks, Daniel & Mistry, Malcolm & Schaub, Max, 2021. "Climate change literacy and migration potential: micro-level evidence from Africa," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 169(1-2), pages 1-1.
    9. Gareth J. Marshall & Kirsti Jylhä & Sonja Kivinen & Mikko Laapas & Anita Verpe Dyrrdal, 2020. "The role of atmospheric circulation patterns in driving recent changes in indices of extreme seasonal precipitation across Arctic Fennoscandia," Climatic Change, Springer, vol. 162(2), pages 741-759, September.
    10. Aissatou Ndiaye & Mounkaila Saley Moussa & Cheikh Dione & Windmanagda Sawadogo & Jan Bliefernicht & Laouali Dungall & Harald Kunstmann, 2022. "Projected Changes in Solar PV and Wind Energy Potential over West Africa: An Analysis of CORDEX-CORE Simulations," Energies, MDPI, vol. 15(24), pages 1-22, December.
    11. Ibrahim Njouenwet & Derbetini Appolinaire Vondou & Stephanie Vanessa Ngono Ashu & Robert Nouayou, 2021. "Contributions of Seasonal Rainfall to Recent Trends in Cameroon’s Cotton Yields," Sustainability, MDPI, vol. 13(21), pages 1-13, November.
    12. Berlemann, Michael & Eurich, Marina, 2021. "Natural hazard risk and life satisfaction – Empirical evidence for hurricanes," Ecological Economics, Elsevier, vol. 190(C).
    13. Christopher J. Picard & Jonathan M. Winter & Charlotte Cockburn & Janel Hanrahan & Natalie G. Teale & Patrick J. Clemins & Brian Beckage, 2023. "Twenty-first century increases in total and extreme precipitation across the Northeastern USA," Climatic Change, Springer, vol. 176(6), pages 1-26, June.
    14. Paul Waidelich & Fulden Batibeniz & James Rising & Jarmo S. Kikstra & Sonia I. Seneviratne, 2024. "Climate damage projections beyond annual temperature," Nature Climate Change, Nature, vol. 14(6), pages 592-599, June.
    15. Amanda de O. Regueira & Henderson Silva Wanderley, 2022. "Changes in rainfall rates and increased number of extreme rainfall events in Rio de Janeiro city," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(3), pages 3833-3847, December.
    16. Mélanie Gittard, 2024. "Impacts of repetitive droughts and the key role of experience : evidence from Nigeria," PSE Working Papers halshs-04685420, HAL.
    17. Xiaoyan Liang & Zhenmin Niu & Xiaolong Li, 2023. "Temporal and Spatial Variations of Extreme Climate Events in Northwestern China from 1960 to 2020," Sustainability, MDPI, vol. 15(20), pages 1-20, October.
    18. Yu Nie & Ying Sun & Xuebin Zhang & Gang Chen, 2025. "Human-induced changes in extreme cold surges across the Northern Hemisphere," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    19. Calabrese, Raffaella & Dombrowski, Timothy & Mandel, Antoine & Pace, R. Kelley & Zanin, Luca, 2024. "Impacts of extreme weather events on mortgage risks and their evolution under climate change: A case study on Florida," European Journal of Operational Research, Elsevier, vol. 314(1), pages 377-392.
    20. Djuidja, Ursula Hillary Tumamo & Sonwa, Denis & Degrande, Ann & Kamga, Rodrigue & Tanko, Adamu Idris, 2023. "Can climate information services support semi-arid farmers ‘context-specific adaptation needs in Cameroon? An analysis of actor’s roles, network and its implication on development and the delivery of ," 2023 Seventh AAAE/60th AEASA Conference, September 18-21, 2023, Durban, South Africa 364830, African Association of Agricultural Economists (AAAE).

    More about this item

    Keywords

    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:12:p:6803-:d:576057. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.