IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i12p6660-d573201.html
   My bibliography  Save this article

Oil Pollution Affects the Central Metabolism of Keystone Vachellia ( Acacia ) Trees

Author

Listed:
  • Marco Ferrante

    (Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculty of Agriculture and Environment, University of the Azores, 9700-042 Angra do Heroísmo, Portugal
    Mitrani Department of Desert Ecology, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 8499000, Israel)

  • Anuma Dangol

    (The French Associates Institute for Agriculture and Biotechnology of Drylands, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 8499000, Israel)

  • Shoshana Didi-Cohen

    (The French Associates Institute for Agriculture and Biotechnology of Drylands, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 8499000, Israel)

  • Gidon Winters

    (The Dead Sea Arava Science Center, Masada 86910, Israel
    Eilat Campus, Ben-Gurion University of the Negev, Hatmarim Blv, Eilat 8855630, Israel)

  • Vered Tzin

    (The French Associates Institute for Agriculture and Biotechnology of Drylands, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 8499000, Israel
    The last two authors contributed equally to the paper.)

  • Michal Segoli

    (Mitrani Department of Desert Ecology, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 8499000, Israel
    The last two authors contributed equally to the paper.)

Abstract

Vachellia (formerly Acacia ) trees are native to arid environments in Africa and the Arabian Peninsula, where they often support the local animal and plant communities acting as keystone species. The aim of this study was to examine whether oil pollution affected the central metabolism of the native keystone trees Vachellia tortilis (Forssk.) and V. raddiana (Savi), as either adults or seedlings. The study was conducted in the Evrona Nature Reserve, a desert ecosystem in southern Israel where two major oil spills occurred in 1975 and in 2014. Leaf samples were collected to analyze the central metabolite profiles from oil-polluted and unpolluted adult trees and from Vachellia seedlings growing in oil-polluted and unpolluted soils in an outdoor setup. We found that oil pollution had a stronger effect on one-year-old seedlings than on adult trees, reducing the levels of amino acids, sugars, and organic acids. While adult trees are mildly affected by oil pollution, the effects on young seedlings can cause a long-term reduction in the population of these keystone desert trees, ultimately threatening this entire ecosystem.

Suggested Citation

  • Marco Ferrante & Anuma Dangol & Shoshana Didi-Cohen & Gidon Winters & Vered Tzin & Michal Segoli, 2021. "Oil Pollution Affects the Central Metabolism of Keystone Vachellia ( Acacia ) Trees," Sustainability, MDPI, vol. 13(12), pages 1-12, June.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:12:p:6660-:d:573201
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/12/6660/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/12/6660/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Patrick Moriarty & Damon Honnery, 2020. "Feasibility of a 100% Global Renewable Energy System," Energies, MDPI, vol. 13(21), pages 1-16, October.
    2. Lenth, Russell V., 2016. "Least-Squares Means: The R Package lsmeans," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 69(i01).
    3. F. I. Achuba, 2006. "The Effect of Sublethal Concentrations of Crude Oil on the Growth and Metabolism of Cowpea (Vigna unguiculata) Seedlings," Environment Systems and Decisions, Springer, vol. 26(1), pages 17-20, March.
    4. Florinda Martins & Carlos Felgueiras & Miroslava Smitkova & Nídia Caetano, 2019. "Analysis of Fossil Fuel Energy Consumption and Environmental Impacts in European Countries," Energies, MDPI, vol. 12(6), pages 1-11, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Yanfei & Taghizadeh-Hesary, Farhad, 2022. "The economic feasibility of green hydrogen and fuel cell electric vehicles for road transport in China," Energy Policy, Elsevier, vol. 160(C).
    2. Tariq Ullah & Krzysztof Sobczak & Grzegorz Liśkiewicz & Amjid Khan, 2022. "Two-Dimensional URANS Numerical Investigation of Critical Parameters on a Pitch Oscillating VAWT Airfoil under Dynamic Stall," Energies, MDPI, vol. 15(15), pages 1-19, August.
    3. Zhao, Qin & Zhang, Houcheng & Hu, Ziyang & Hou, Shujin, 2021. "Performance evaluation of a new hybrid system consisting of a photovoltaic module and an absorption heat transformer for electricity production and heat upgrading," Energy, Elsevier, vol. 216(C).
    4. Sean Coogan & Zhixian Sui & David Raubenheimer, 2018. "Gluttony and guilt: monthly trends in internet search query data are comparable with national-level energy intake and dieting behavior," Palgrave Communications, Palgrave Macmillan, vol. 4(1), pages 1-9, December.
    5. Paul E. Rose & James E. Brereton & Lewis J. Rowden & Ricardo Lemos Figueiredo & Lisa M. Riley, 2019. "What’s new from the zoo? An analysis of ten years of zoo-themed research output," Palgrave Communications, Palgrave Macmillan, vol. 5(1), pages 1-10, December.
    6. Karol Tucki & Małgorzata Krzywonos & Olga Orynycz & Adam Kupczyk & Anna Bączyk & Izabela Wielewska, 2021. "Analysis of the Possibility of Fulfilling the Paris Agreement by the Visegrad Group Countries," Sustainability, MDPI, vol. 13(16), pages 1-21, August.
    7. Jacques, Pierre & Delannoy, Louis & Andrieu, Baptiste & Yilmaz, Devrim & Jeanmart, Hervé & Godin, Antoine, 2023. "Assessing the economic consequences of an energy transition through a biophysical stock-flow consistent model," Ecological Economics, Elsevier, vol. 209(C).
    8. Sitka, Andrzej & Szulc, Piotr & Smykowski, Daniel & Jodkowski, Wiesław, 2021. "Application of poultry manure as an energy resource by its gasification in a prototype rotary counterflow gasifier," Renewable Energy, Elsevier, vol. 175(C), pages 422-429.
    9. Stella D. Juventia & Sarah K. Jones & Marie-Angélique Laporte & Roseline Remans & Chiara Villani & Natalia Estrada-Carmona, 2020. "Text Mining National Commitments towards Agrobiodiversity Conservation and Use," Sustainability, MDPI, vol. 12(2), pages 1-19, January.
    10. Gayo-Abeleira, Miguel & Santos, Carlos & Javier Rodríguez Sánchez, Francisco & Martín, Pedro & Antonio Jiménez, José & Santiso, Enrique, 2022. "Aperiodic two-layer energy management system for community microgrids based on blockchain strategy," Applied Energy, Elsevier, vol. 324(C).
    11. Radosław Miśkiewicz, 2020. "Efficiency of Electricity Production Technology from Post-Process Gas Heat: Ecological, Economic and Social Benefits," Energies, MDPI, vol. 13(22), pages 1-15, November.
    12. Claire H Luby & Julie C Dawson & Irwin L Goldman, 2016. "Assessment and Accessibility of Phenotypic and Genotypic Diversity of Carrot (Daucus carota L. var. sativus) Cultivars Commercially Available in the United States," PLOS ONE, Public Library of Science, vol. 11(12), pages 1-19, December.
    13. Abdul Ghani Olabi & Tabbi Wilberforce & Mohammad Ali Abdelkareem & Mohamad Ramadan, 2021. "Critical Review of Flywheel Energy Storage System," Energies, MDPI, vol. 14(8), pages 1-33, April.
    14. Husam Rjoub & Jamiu Adetola Odugbesan & Tomiwa Sunday Adebayo & Wing-Keung Wong, 2021. "Investigating the Causal Relationships among Carbon Emissions, Economic Growth, and Life Expectancy in Turkey: Evidence from Time and Frequency Domain Causality Techniques," Sustainability, MDPI, vol. 13(5), pages 1-20, March.
    15. Hasan Huseyin Coban & Wojciech Lewicki & Ewelina Sendek-Matysiak & Zbigniew Łosiewicz & Wojciech Drożdż & Radosław Miśkiewicz, 2022. "Electric Vehicles and Vehicle–Grid Interaction in the Turkish Electricity System," Energies, MDPI, vol. 15(21), pages 1-19, November.
    16. Batara Surya & Hamsina Hamsina & Ridwan Ridwan & Baharuddin Baharuddin & Firman Menne & Andi Tenri Fitriyah & Emil Salim Rasyidi, 2020. "The Complexity of Space Utilization and Environmental Pollution Control in the Main Corridor of Makassar City, South Sulawesi, Indonesia," Sustainability, MDPI, vol. 12(21), pages 1-41, November.
    17. Šoltés Erik & Zelinová Silvia & Bilíková Mária, 2019. "General Linear Model: An Effective Tool For Analysis Of Claim Severity In Motor Third Party Liability Insurance," Statistics in Transition New Series, Polish Statistical Association, vol. 20(4), pages 13-31, December.
    18. Agnieszka Sompolska-Rzechuła & Agnieszka Kurdyś-Kujawska, 2021. "Towards Understanding Interactions between Sustainable Development Goals: The Role of Climate-Well-Being Linkages. Experiences of EU Countries," Energies, MDPI, vol. 14(7), pages 1-20, April.
    19. Muhammad Javed ASIF & Deivaseeno Dorairaj & Ratnam Wickneswari, 2017. "Characterization of natural provenances of Acacia mangium Willd. and Acacia auriculiformis A. Cunn. ex Benth. in Malaysia based on phenotypic traits," Journal of Forest Science, Czech Academy of Agricultural Sciences, vol. 63(12), pages 562-576.
    20. Xie, Xiaohong & Osińska, Magdalena & Szczepaniak, Małgorzata, 2023. "Do young generations save for retirement? Ensuring financial security of Gen Z and Gen Y," Journal of Policy Modeling, Elsevier, vol. 45(3), pages 644-668.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:12:p:6660-:d:573201. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.