IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i11p5925-d561343.html
   My bibliography  Save this article

Risk-Informed Performance-Based Metrics for Evaluating the Structural Safety and Serviceability of Constructed Assets against Natural Disasters

Author

Listed:
  • Nuno Marques de Almeida

    (Department of Civil Engineering, Architecture and Georesources, University of Lisbon (IST), 1049-001 Lisboa, Portugal)

  • Maria João Falcão Silva

    (Building Economy, Management and Technology Unit, Laboratório Nacional de Engenharia Civil (LNEC), 1700-066 Lisboa, Portugal)

  • Filipa Salvado

    (Building Economy, Management and Technology Unit, Laboratório Nacional de Engenharia Civil (LNEC), 1700-066 Lisboa, Portugal)

  • Hugo Rodrigues

    (Civil Engineering Department, University of Aveiro, 3810-193 Aveiro, Portugal)

  • Damjan Maletič

    (Faculty of Organizational Sciences, University of Maribor, 4000 Kranj, Slovenia)

Abstract

The tangible and intangible value derived from the built environment is of great importance. This raises concerns related to the resilience of constructed assets to both human-made and natural disasters. Consideration of these concerns is present in the countless decisions made by various stakeholders during the decades-long life cycle of this type of physical asset. This paper addresses these issues from the standpoint of the engineering aspects that must be managed to enhance the structural safety and serviceability of buildings against natural disasters. It presents risk-informed performance-based parameterization strategies and evaluation criteria as well as design methods to embed differentiated levels of structural safety and serviceability of buildings against wind, snow, earthquakes and other natural agents. The proposed approach enables designers to assure the resilience and reliability of building structures against natural risks.

Suggested Citation

  • Nuno Marques de Almeida & Maria João Falcão Silva & Filipa Salvado & Hugo Rodrigues & Damjan Maletič, 2021. "Risk-Informed Performance-Based Metrics for Evaluating the Structural Safety and Serviceability of Constructed Assets against Natural Disasters," Sustainability, MDPI, vol. 13(11), pages 1-21, May.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:11:p:5925-:d:561343
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/11/5925/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/11/5925/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Abid Mehmood, 2016. "Of resilient places: planning for urban resilience," European Planning Studies, Taylor & Francis Journals, vol. 24(2), pages 407-419, February.
    2. Jesus Palomo & David Rios Insua & Fabrizio Ruggeri, 2007. "Modeling External Risks in Project Management," Risk Analysis, John Wiley & Sons, vol. 27(4), pages 961-978, August.
    3. Francis, Royce & Bekera, Behailu, 2014. "A metric and frameworks for resilience analysis of engineered and infrastructure systems," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 90-103.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shen, Lijuan & Cassottana, Beatrice & Tang, Loon Ching, 2018. "Statistical trend tests for resilience of power systems," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 138-147.
    2. Plischke, Elmar & Borgonovo, Emanuele, 2019. "Copula theory and probabilistic sensitivity analysis: Is there a connection?," European Journal of Operational Research, Elsevier, vol. 277(3), pages 1046-1059.
    3. Trucco, Paolo & Petrenj, Boris, 2023. "Characterisation of resilience metrics in full-scale applications to interdependent infrastructure systems," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    4. Sathishkumar Samiappan & Andrew Shamaskin & Jiangdong Liu & Jennifer Roberts & Anna Linhoss & Kristine Evans, 2019. "Land Conservation in the Gulf of Mexico Region: A Comprehensive Review of Plans, Priorities, and Efforts," Land, MDPI, vol. 8(5), pages 1-19, May.
    5. Fauzan Hanif Jufri & Jun-Sung Kim & Jaesung Jung, 2017. "Analysis of Determinants of the Impact and the Grid Capability to Evaluate and Improve Grid Resilience from Extreme Weather Event," Energies, MDPI, vol. 10(11), pages 1-17, November.
    6. Hao, Yucheng & Jia, Limin & Zio, Enrico & Wang, Yanhui & Small, Michael & Li, Man, 2023. "Improving resilience of high-speed train by optimizing repair strategies," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    7. Yang, Bofan & Zhang, Lin & Zhang, Bo & Xiang, Yang & An, Lei & Wang, Wenfeng, 2022. "Complex equipment system resilience: Composition, measurement and element analysis," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    8. Carvallo, Juan Pablo & Frick, Natalie Mims & Schwartz, Lisa, 2022. "A review of examples and opportunities to quantify the grid reliability and resilience impacts of energy efficiency," Energy Policy, Elsevier, vol. 169(C).
    9. Zobel, Christopher W. & Baghersad, Milad, 2020. "Analytically comparing disaster resilience across multiple dimensions," Socio-Economic Planning Sciences, Elsevier, vol. 69(C).
    10. Johansson, Bengt & Jonsson, Daniel K. & Veibäck, Ester & Sonnsjö, Hannes, 2016. "Assessing the capabilites to manage risks in energy systems–analytical perspectives and frameworks with a starting point in Swedish experiences," Energy, Elsevier, vol. 116(P1), pages 429-435.
    11. Mujjuni, F. & Betts, T. & To, L.S. & Blanchard, R.E., 2021. "Resilience a means to development: A resilience assessment framework and a catalogue of indicators," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    12. H. Klammler & P. S. C. Rao & K. Hatfield, 2018. "Modeling dynamic resilience in coupled technological-social systems subjected to stochastic disturbance regimes," Environment Systems and Decisions, Springer, vol. 38(1), pages 140-159, March.
    13. Liang Zhao & Gaofeng Xu & Yan Cui & Feng Kong & Huina Gao & Xia Zhou, 2023. "Post-Disaster Restoration and Reconstruction Assessment of the Jiuzhaigou Lake Landscape and a Resilience Development Pathway," IJERPH, MDPI, vol. 20(5), pages 1-18, February.
    14. Khalilullah Mayar & David G. Carmichael & Xuesong Shen, 2022. "Resilience and Systems—A Review," Sustainability, MDPI, vol. 14(14), pages 1-22, July.
    15. Laura Gómez Aíza & Karina Ruíz Bedolla & Antonio M. Low-Pfeng & Laura M. L. Vallejos Escalona & Paola Massyel García-Meneses, 2021. "Perceptions and sustainable actions under land degradation and climate change: the case of a remnant wetland in Mexico City," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(4), pages 4984-5003, April.
    16. Ahmadi, Somayeh & Saboohi, Yadollah & Vakili, Ali, 2021. "Frameworks, quantitative indicators, characters, and modeling approaches to analysis of energy system resilience: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    17. Fabio Mazzola & Iolanda Cascio & Rosalia Epifanio & Giuseppe Giacomo, 2018. "Territorial capital and growth over the Great Recession: a local analysis for Italy," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 60(2), pages 411-441, March.
    18. Dubaniowski, Mateusz Iwo & Heinimann, Hans Rudolf, 2021. "Framework for modeling interdependencies between households, businesses, and infrastructure system, and their response to disruptions—application," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    19. Yang Wei & Tetsuo Kidokoro & Fumihiko Seta & Bo Shu, 2024. "Spatial-Temporal Assessment of Urban Resilience to Disasters: A Case Study in Chengdu, China," Land, MDPI, vol. 13(4), pages 1-24, April.
    20. Eichhorn Colombo, Konrad W., 2023. "Financial resilience analysis of floating production, storage and offloading plant operated in Norwegian Arctic region: Case study using inter-/transdisciplinary system dynamics modeling and simulatio," Energy, Elsevier, vol. 268(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:11:p:5925-:d:561343. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.