IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i9p3828-d355313.html
   My bibliography  Save this article

Environmental Impacts of Beef as Corrected for the Provision of Ecosystem Services

Author

Listed:
  • Andrea Bragaglio

    (Dipartimento di Medicina Veterinaria, Università degli Studi di Bari Aldo Moro, sp Casamassima, km 3, 70010 Valenzano (BA), Italy)

  • Ada Braghieri

    (Scuola di Scienze Agrarie, Forestali, Alimentari ed Ambientali, Università degli Studi della Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy)

  • Corrado Pacelli

    (Scuola di Scienze Agrarie, Forestali, Alimentari ed Ambientali, Università degli Studi della Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy)

  • Fabio Napolitano

    (Scuola di Scienze Agrarie, Forestali, Alimentari ed Ambientali, Università degli Studi della Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy)

Abstract

We aimed to assess whether the environmental impacts in terms of global warming potential (GWP), acidification potential (AP), eutrophication potential (EP), and land occupation (LO) of beef can be decreased when ecosystem and cultural/provisioning services are included in the evaluation. We used four Italian production systems: Fat, with beef imported calves kept in confinement; CoCaI, with beef cows and calves kept in confinement; SpEx, with beef cows and calves kept on pasture and finishing conducted in confinement; and Pod, with Podolian cows and calves kept on pasture and finishing conducted in confinement. After the economic allocation, the GWP of system Pod decreased considerably and showed values lower than those computed for systems CoCaI and SpEx ( P < 0.05 and P < 0.001, respectively). System Pod showed the lowest AP and EP as compared with all the other systems ( P < 0.01). Systems Fat and CoCaI showed the smallest LO, with values lower than systems Pod ( P < 0.05) and SpEx ( P < 0.001). We conclude that the environmental impacts of extensive and local beef production systems in terms of GWP, AP, and EP was markedly reduced when the provision of accessory services was included in the calculation. Conversely, LO did not markedly change due to the high absolute values needed to allow pasture-based feeding. The estimation of additional positive aspects linked to the use of natural pastures, such as removal of carbon dioxide, increased biodiversity, and exploitation of feeds nonedible by humans, may allow a further reduction of LO.

Suggested Citation

  • Andrea Bragaglio & Ada Braghieri & Corrado Pacelli & Fabio Napolitano, 2020. "Environmental Impacts of Beef as Corrected for the Provision of Ecosystem Services," Sustainability, MDPI, vol. 12(9), pages 1-15, May.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:9:p:3828-:d:355313
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/9/3828/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/9/3828/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Castanheira, É.G. & Dias, A.C. & Arroja, L. & Amaro, R., 2010. "The environmental performance of milk production on a typical Portuguese dairy farm," Agricultural Systems, Elsevier, vol. 103(7), pages 498-507, September.
    2. Sabia, Emilio & Napolitano, Fabio & Claps, Salvatore & De Rosa, Giuseppe & Barile, Vittoria Lucia & Braghieri, Ada & Pacelli, Corrado, 2018. "Environmental impact of dairy buffalo heifers kept on pasture or in confinement," Agricultural Systems, Elsevier, vol. 159(C), pages 42-49.
    3. de Groot, Rudolf S. & Wilson, Matthew A. & Boumans, Roelof M. J., 2002. "A typology for the classification, description and valuation of ecosystem functions, goods and services," Ecological Economics, Elsevier, vol. 41(3), pages 393-408, June.
    4. Pelletier, Nathan & Pirog, Rich & Rasmussen, Rebecca, 2010. "Comparative life cycle environmental impacts of three beef production strategies in the Upper Midwestern United States," Agricultural Systems, Elsevier, vol. 103(6), pages 380-389, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Elio Romano & Rocco Roma & Flavio Tidona & Giorgio Giraffa & Andrea Bragaglio, 2021. "Dairy Farms and Life Cycle Assessment (LCA): The Allocation Criterion Useful to Estimate Undesirable Products," Sustainability, MDPI, vol. 13(8), pages 1-24, April.
    2. Andrea Bragaglio & Aristide Maggiolino & Elio Romano & Pasquale De Palo, 2022. "Role of Corn Silage in the Sustainability of Dairy Buffalo Systems and New Perspective of Allocation Criterion," Agriculture, MDPI, vol. 12(6), pages 1-24, June.
    3. Michele Cerrato & Allegra Iasi & Federica Di Bennardo & Maria Pergola, 2023. "Evaluation of the Economic and Environmental Sustainability of Livestock Farms in Inland Areas," Agriculture, MDPI, vol. 13(9), pages 1-17, August.
    4. Elio Romano & Pasquale De Palo & Flavio Tidona & Aristide Maggiolino & Andrea Bragaglio, 2021. "Dairy Buffalo Life Cycle Assessment (LCA) Affected by a Management Choice: The Production of Wheat Crop," Sustainability, MDPI, vol. 13(19), pages 1-20, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Oliveira, M. & Zucaro, A. & Santagata, R. & Ulgiati, S., 2022. "Environmental assessment of milk production from local to regional scales," Ecological Modelling, Elsevier, vol. 463(C).
    2. Pedro Henrique Presumido & Fernando Sousa & Artur Gonçalves & Tatiane Cristina Dal Bosco & Manuel Feliciano, 2018. "Environmental Impacts of the Beef Production Chain in the Northeast of Portugal Using Life Cycle Assessment," Agriculture, MDPI, vol. 8(10), pages 1-19, October.
    3. Oliveira, Mariana & Cocozza, Annalisa & Zucaro, Amalia & Santagata, Remo & Ulgiati, Sergio, 2021. "Circular economy in the agro-industry: Integrated environmental assessment of dairy products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    4. Cornelis Leeuwen & Jos Frijns & Annemarie Wezel & Frans Ven, 2012. "City Blueprints: 24 Indicators to Assess the Sustainability of the Urban Water Cycle," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(8), pages 2177-2197, June.
    5. Stefan Liehr & Julia Röhrig & Marion Mehring & Thomas Kluge, 2017. "How the Social-Ecological Systems Concept Can Guide Transdisciplinary Research and Implementation: Addressing Water Challenges in Central Northern Namibia," Sustainability, MDPI, vol. 9(7), pages 1-19, June.
    6. Yanzi Wang & Chunming Wu & Yongfeng Gong & Zhen Zhu, 2021. "Can Adaptive Governance Promote Coupling Social-Ecological Systems? Evidence from the Vulnerable Ecological Region of Northwestern China," Sustainability, MDPI, vol. 13(20), pages 1-19, October.
    7. Breffle, William S. & Muralidharan, Daya & Donovan, Richard P. & Liu, Fangming & Mukherjee, Amlan & Jin, Yongliang, 2013. "Socioeconomic evaluation of the impact of natural resource stressors on human-use services in the Great Lakes environment: A Lake Michigan case study," Resources Policy, Elsevier, vol. 38(2), pages 152-161.
    8. Comino, E. & Ferretti, V., 2016. "Indicators-based spatial SWOT analysis: supporting the strategic planning and management of complex territorial systems," LSE Research Online Documents on Economics 64142, London School of Economics and Political Science, LSE Library.
    9. Jansson, Åsa, 2013. "Reaching for a sustainable, resilient urban future using the lens of ecosystem services," Ecological Economics, Elsevier, vol. 86(C), pages 285-291.
    10. P. Hlaváčková & D. Šafařík, 2016. "Quantification of the utility value of the recreational function of forests from the aspect of valuation practice," Journal of Forest Science, Czech Academy of Agricultural Sciences, vol. 62(8), pages 345-356.
    11. Bolaños-Valencia, Ingrid & Villegas-Palacio, Clara & López-Gómez, Connie Paola & Berrouet, Lina & Ruiz, Aura, 2019. "Social perception of risk in socio-ecological systems. A qualitative and quantitative analysis," Ecosystem Services, Elsevier, vol. 38(C), pages 1-1.
    12. Bordt, Michael, 2018. "Discourses in Ecosystem Accounting: A Survey of the Expert Community," Ecological Economics, Elsevier, vol. 144(C), pages 82-99.
    13. Hackbart, Vivian C.S. & de Lima, Guilherme T.N.P. & dos Santos, Rozely F., 2017. "Theory and practice of water ecosystem services valuation: Where are we going?," Ecosystem Services, Elsevier, vol. 23(C), pages 218-227.
    14. Meixler, Marcia S., 2017. "Assessment of Hurricane Sandy damage and resulting loss in ecosystem services in a coastal-urban setting," Ecosystem Services, Elsevier, vol. 24(C), pages 28-46.
    15. Juliana Hurtado Rassi, 2020. "Gestión conjunta de ecosistemas transfronterizos: la importancia del trabajo articulado entre los Estados para la conservación de los recursos naturales. Análisis del caso particular de la “Reserva de," Books, Universidad Externado de Colombia, Facultad de Derecho, number 1241, October.
    16. Alessio D’Auria & Pasquale De Toro & Nicola Fierro & Elisa Montone, 2018. "Integration between GIS and Multi-Criteria Analysis for Ecosystem Services Assessment: A Methodological Proposal for the National Park of Cilento, Vallo di Diano and Alburni (Italy)," Sustainability, MDPI, vol. 10(9), pages 1-25, September.
    17. Rode, Julian & Le Menestrel, Marc & Cornelissen, Gert, 2017. "Ecosystem Service Arguments Enhance Public Support for Environmental Protection - But Beware of the Numbers!," Ecological Economics, Elsevier, vol. 141(C), pages 213-221.
    18. Johann Audrain & Mateo Cordier & Sylvie Faucheux & Martin O’Connor, 2013. "Écologie territoriale et indicateurs pour un développement durable de la métropole parisienne," Revue d'économie régionale et urbaine, Armand Colin, vol. 0(3), pages 523-559.
    19. Stenger, Anne & Harou, Patrice & Navrud, Ståle, 2009. "Valuing environmental goods and services derived from the forests," Journal of Forest Economics, Elsevier, vol. 15(1-2), pages 1-14, January.
    20. Benjamin Leard, 2011. "Joan Martinez-Alier and Ingo Ropke (eds.): Recent developments in ecological economics (2 vols.)," Journal of Bioeconomics, Springer, vol. 13(2), pages 161-178, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:9:p:3828-:d:355313. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.