IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i7p2750-d339636.html
   My bibliography  Save this article

Assessing Urban Risk to Extreme Heat in China

Author

Listed:
  • Xiaojun Huang

    (College of Urban and Environmental Science, Northwest University, Xi’an 710127, China
    Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, Xi’an 710127, China)

  • Yanyu Li

    (College of Urban and Environmental Science, Northwest University, Xi’an 710127, China)

  • Yuhui Guo

    (College of Urban and Environmental Science, Northwest University, Xi’an 710127, China)

  • Dianyuan Zheng

    (College of Urban and Environmental Science, Northwest University, Xi’an 710127, China)

  • Mingyue Qi

    (College of Urban and Environmental Science, Northwest University, Xi’an 710127, China)

Abstract

Many cities are experiencing persistent risk in China due to frequent extreme weather events. Some extreme weather events, such as extreme heat hazard, have seriously threatened human health and socio-economic development in cities. There is an urgent need to measure the degree of extreme heat risk and identify cites with the highest levels of extreme heat risk. In this study, we presented a risk assessment framework of extreme heat and considered risk as a combination of hazard, exposure, and vulnerability. Based on these three dimensions, we selected relevant variables from historical meteorological data (1960–2016) and socioeconomic statistics in 2016, establishing an indicator system of extreme heat risk evaluation. Finally, we developed an extreme heat risk index to quantify the levels of extreme heat risk of 296 prefecture-level cities in China and revealed the spatial pattern of extreme heat risk in China in 2016 and their dominant factors. The results show that (1) cities with high levels of extreme heat hazard are mainly located in the south of China, especially in the southeast of China; (2) the spatial distribution of the extreme heat risk index shows obvious agglomeration characteristics; (3) the spatial distribution of the extreme heat risk is still mostly controlled by natural geographical conditions such as climate and topography; (4) among the four types of hazard-dominated, exposure-dominated, vulnerability-dominated, and low risk cities, the number of vulnerability-dominated cities is the largest. The results of this study can provide support for the risk management of extreme heat disasters and the formation of targeted countermeasures in China.

Suggested Citation

  • Xiaojun Huang & Yanyu Li & Yuhui Guo & Dianyuan Zheng & Mingyue Qi, 2020. "Assessing Urban Risk to Extreme Heat in China," Sustainability, MDPI, vol. 12(7), pages 1-17, April.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:7:p:2750-:d:339636
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/7/2750/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/7/2750/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Liangliang Zhang & Zhao Zhang & Yi Chen & Xing Wei & Xiao Song, 2018. "Exposure, vulnerability, and adaptation of major maize-growing areas to extreme temperature," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 91(3), pages 1257-1272, April.
    2. Robert G. D. Macnee & Akihiro Tokai, 2016. "Heat wave vulnerability and exposure mapping for Osaka City, Japan," Environment Systems and Decisions, Springer, vol. 36(4), pages 368-376, December.
    3. Luis Inostroza & Massimo Palme & Francisco de la Barrera, 2016. "A Heat Vulnerability Index: Spatial Patterns of Exposure, Sensitivity and Adaptive Capacity for Santiago de Chile," PLOS ONE, Public Library of Science, vol. 11(9), pages 1-26, September.
    4. Min Jiang & Liangjie Xin & Xiubin Li & Minghong Tan, 2016. "Spatiotemporal Variation of China’s State-Owned Construction Land Supply from 2003 to 2014," Sustainability, MDPI, vol. 8(11), pages 1-16, November.
    5. Ebert, Udo & Welsch, Heinz, 2004. "Meaningful environmental indices: a social choice approach," Journal of Environmental Economics and Management, Elsevier, vol. 47(2), pages 270-283, March.
    6. Yi Ge & Wen Dou & Jianping Dai, 2017. "A New Approach to Identify Social Vulnerability to Climate Change in the Yangtze River Delta," Sustainability, MDPI, vol. 9(12), pages 1-19, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dandan Yu & Shan Li & Ning (Chris) Chen & Michael Hall & Zhongyang Guo, 2023. "High Temperatures and Tourism: Findings from China," Sustainability, MDPI, vol. 15(19), pages 1-14, September.
    2. Nadeem Akhtar & Hidayat Ullah Khan & Muhammad Asif Jan & Cornelius B. Pratt & Ma Jianfu, 2021. "Exploring the Determinants of the China-Pakistan Economic Corridor and Its Impact on Local Communities," SAGE Open, , vol. 11(4), pages 21582440211, December.
    3. Brown, Austin L. & Sperling, Daniel & Austin, Bernadette & DeShazo, JR & Fulton, Lew & Lipman, Timothy & Murphy, Colin W & Saphores, Jean Daniel & Tal, Gil & Abrams, Carolyn & Chakraborty, Debapriya &, 2021. "Driving California’s Transportation Emissions to Zero," Institute of Transportation Studies, Working Paper Series qt3np3p2t0, Institute of Transportation Studies, UC Davis.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Meryl Jagarnath & Tirusha Thambiran & Michael Gebreslasie, 2020. "Heat stress risk and vulnerability under climate change in Durban metropolitan, South Africa—identifying urban planning priorities for adaptation," Climatic Change, Springer, vol. 163(2), pages 807-829, November.
    2. Valadkhani, Abbas & Roshdi, Israfil & Smyth, Russell, 2016. "A multiplicative environmental DEA approach to measure efficiency changes in the world's major polluters," Energy Economics, Elsevier, vol. 54(C), pages 363-375.
    3. Cherchye, Laurens & Knox Lovell, C.A. & Moesen, Wim & Van Puyenbroeck, Tom, 2007. "One market, one number? A composite indicator assessment of EU internal market dynamics," European Economic Review, Elsevier, vol. 51(3), pages 749-779, April.
    4. Zachary A. Collier & James H. Lambert & Igor Linkov, 2016. "Data analysis and modeling to support policy decisions in environmental, transportation, and energy systems," Environment Systems and Decisions, Springer, vol. 36(4), pages 329-330, December.
    5. Van Puyenbroeck, Tom & Rogge, Nicky, 2017. "Geometric mean quantity index numbers with Benefit-of-the-Doubt weights," European Journal of Operational Research, Elsevier, vol. 256(3), pages 1004-1014.
    6. Jie Zhang & Majed Alharthi & Qaiser Abbas & Weiqing Li & Muhammad Mohsin & Khan Jamal & Farhad Taghizadeh-Hesary, 2020. "Reassessing the Environmental Kuznets Curve in Relation to Energy Efficiency and Economic Growth," Sustainability, MDPI, vol. 12(20), pages 1-21, October.
    7. Jeroen C.J.M. van den Bergh, 2014. "Sustainable development in ecological economics," Chapters, in: Giles Atkinson & Simon Dietz & Eric Neumayer & Matthew Agarwala (ed.), Handbook of Sustainable Development, chapter 3, pages 41-54, Edward Elgar Publishing.
    8. Van de Kerk, Geurt & Manuel, Arthur R., 2008. "A comprehensive index for a sustainable society: The SSI -- the Sustainable Society Index," Ecological Economics, Elsevier, vol. 66(2-3), pages 228-242, June.
    9. J. Ram Pillarisetti & Jeroen C.J.M. van den Bergh, 2008. "Sustainable Nations: What do Aggregate Indicators tell us?," Tinbergen Institute Discussion Papers 08-012/3, Tinbergen Institute.
    10. Angela Rosa & Angela Santangelo & Simona Tondelli, 2021. "Investigating the Integration of Cultural Heritage Disaster Risk Management into Urban Planning Tools. The Ravenna Case Study," Sustainability, MDPI, vol. 13(2), pages 1-24, January.
    11. Wei Zhang & Qianxing Zhao & Minjie Pei, 2021. "How much uncertainty does the choice of data transforming method brings to heat risk mapping? Evidence from China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(1), pages 349-373, March.
    12. Whitten, Stuart M., 2017. "Designing and implementing conservation tender metrics: Twelve core considerations," Land Use Policy, Elsevier, vol. 63(C), pages 561-571.
    13. Pollesch, N.L. & Dale, V.H., 2016. "Normalization in sustainability assessment: Methods and implications," Ecological Economics, Elsevier, vol. 130(C), pages 195-208.
    14. Fabio Grazi & Jeroen Bergh & Piet Rietveld, 2007. "Spatial welfare economics versus ecological footprint: modeling agglomeration, externalities and trade," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 38(1), pages 135-153, September.
    15. Nicky Rogge & Emilia Konttinen, 2018. "Social Inclusion in the EU Since the Enlargement: Progress or Regress?," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 135(2), pages 563-584, January.
    16. Vijaya Krishnan, 2015. "Development of a Multidimensional Living Conditions Index (LCI)," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 120(2), pages 455-481, January.
    17. Fabio Grazi & Jeroen C.J.M. van den Bergh & Piet Rietveld, 2006. "Modeling Spatial Sustainability: Spatial Welfare Economics versus Ecological Footprint," Working Papers 2006.5, Fondazione Eni Enrico Mattei.
    18. Mercy J. Borbor-Cordova & Geremy Ger & Angel A. Valdiviezo-Ajila & Mijail Arias-Hidalgo & David Matamoros & Indira Nolivos & Gonzalo Menoscal-Aldas & Federica Valle & Alessandro Pezzoli & Maria del Pi, 2020. "An Operational Framework for Urban Vulnerability to Floods in the Guayas Estuary Region: The Duran Case Study," Sustainability, MDPI, vol. 12(24), pages 1-23, December.
    19. Serrao, Amilcar, 2008. "Measuring Eco-efficiency of Agricultural Activity in European Countries: A Malmquist Index Analysis," 2008 Annual Meeting, July 27-29, 2008, Orlando, Florida 6152, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    20. Fei Li & Tan Yigitcanlar & Madhav Nepal & Kien Nguyen Thanh & Fatih Dur, 2022. "Understanding Urban Heat Vulnerability Assessment Methods: A PRISMA Review," Energies, MDPI, vol. 15(19), pages 1-34, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:7:p:2750-:d:339636. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.