IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i6p2249-d332035.html
   My bibliography  Save this article

Microbial Indicators and Their Use for Monitoring Drinking Water Quality—A Review

Author

Listed:
  • Xiaotong Wen

    (School of Public Health, Jiangxi Province Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, China)

  • Feiyu Chen

    (Center for disease control and prevention in Dongxiang district, Fuzhou 331800, China)

  • Yixiang Lin

    (School of Public Health, Jiangxi Province Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, China)

  • Hui Zhu

    (Jiangxi Province Center for disease control and prevention, Nanchang 330006, China)

  • Fang Yuan

    (Office of Public Health Studies, University of Hawaii at Mānoa, Honolulu, HI 96822, USA)

  • Duyi Kuang

    (Office of Public Health Studies, University of Hawaii at Mānoa, Honolulu, HI 96822, USA)

  • Zhihui Jia

    (School of Public Health, Jiangxi Province Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, China)

  • Zhaokang Yuan

    (School of Public Health, Jiangxi Province Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, China)

Abstract

An increase in the incidence of water-borne human diseases, such as diarrhea and emesis, has occurred due to drinking polluted water. These water-borne diseases can lead to death, if correct treatment is not provided. Assuring that drinking water quality is safe has been a crucial challenge for public health. Water contamination with pathogenic microorganisms represents a seriously increased threat to human health. Currently, different microorganisms are being used as the primary indicator to assess water quality total coliform and Escherichia coli ( E. coli ) being the most common. However, increasing the occurrence of water-borne illness from sources deemed safe by the microbial standard criteria has raised the question—are these microbial indicators reliable and sensitive enough to ensure water quality? Currently, other microorganisms including bacteria, enteric virus, and protozoa are being tested and used in different countries as alternative indicators to monitor water quality. It is necessary to study the diverse water quality indicator systems used throughout the world and their efficacy with the present water quality. Although water quality standards suggest adding pathogenic microorganisms such as enteric virus as an indicator, China only uses pathogenic E. coli , protozoa. Pin-pointing the shortage of the current water quality indicator system in China is crucial in order to propose changes in future water quality indicator systems.

Suggested Citation

  • Xiaotong Wen & Feiyu Chen & Yixiang Lin & Hui Zhu & Fang Yuan & Duyi Kuang & Zhihui Jia & Zhaokang Yuan, 2020. "Microbial Indicators and Their Use for Monitoring Drinking Water Quality—A Review," Sustainability, MDPI, vol. 12(6), pages 1-14, March.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:6:p:2249-:d:332035
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/6/2249/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/6/2249/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cabelli, V.J. & Dufour, A.P. & Levin, M. & McCabe, L.J. & Haberman, P.W., 1979. "Relationship of microbial indicators to health effects at marine bathing beaches," American Journal of Public Health, American Public Health Association, vol. 69(7), pages 690-696.
    2. Joshua S Gruber & Ayse Ercumen & John M Colford Jr, 2014. "Coliform Bacteria as Indicators of Diarrheal Risk in Household Drinking Water: Systematic Review and Meta-Analysis," PLOS ONE, Public Library of Science, vol. 9(9), pages 1-14, September.
    3. David M. Morens & Gregory K. Folkers & Anthony S. Fauci, 2004. "The challenge of emerging and re-emerging infectious diseases," Nature, Nature, vol. 430(6996), pages 242-249, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dauda Kamara & Doris Bah & Momodu Sesay & Anna Maruta & Bockarie Pompey Sesay & Bobson Derrick Fofanah & Ibrahim Franklyn Kamara & Joseph Sam Kanu & Sulaiman Lakoh & Bailah Molleh & Jamie Guth & Karun, 2022. "Evaluation of Drinking Water Quality and Bacterial Antibiotic Sensitivity in Wells and Standpipes at Household Water Points in Freetown, Sierra Leone," IJERPH, MDPI, vol. 19(11), pages 1-18, May.
    2. Łukasz Jałowiecki & Jakub Hubeny & Monika Harnisz & Grażyna Płaza, 2021. "Seasonal and Technological Shifts of the WHO Priority Multi-Resistant Pathogens in Municipal Wastewater Treatment Plant and Its Receiving Surface Water: A Case Study," IJERPH, MDPI, vol. 19(1), pages 1-13, December.
    3. Junya Wu, 2024. "The Role of Affordability on the Adoption of Residential Point-of-Use Drinking Water Filtering Systems in China," Sustainability, MDPI, vol. 16(2), pages 1-15, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Deqiao Tian & Tao Zheng, 2015. "Emerging infectious disease: trends in the literature on SARS and H7N9 influenza," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(1), pages 485-495, October.
    2. Li, Sen & Vanwambeke, Sophie O. & Licoppe, Alain M. & Speybroeck, Niko, 2014. "Impacts of deer management practices on the spatial dynamics of the tick Ixodes ricinus: A scenario analysis," Ecological Modelling, Elsevier, vol. 276(C), pages 1-13.
    3. Kow-Tong Chen, 2022. "Emerging Infectious Diseases and One Health: Implication for Public Health," IJERPH, MDPI, vol. 19(15), pages 1-4, July.
    4. Shujuan Li & Lingli Zhu & Lidan Zhang & Guoyan Zhang & Hongyan Ren & Liang Lu, 2023. "Urbanization-Related Environmental Factors and Hemorrhagic Fever with Renal Syndrome: A Review Based on Studies Taken in China," IJERPH, MDPI, vol. 20(4), pages 1-20, February.
    5. Nuur Hafizah Md Iderus & Sarbhan Singh Lakha Singh & Sumarni Mohd Ghazali & Cheong Yoon Ling & Tan Cia Vei & Ahmed Syahmi Syafiq Md Zamri & Nadhar Ahmad Jaafar & Qistina Ruslan & Nur Huda Ahmad Jaghfa, 2022. "Correlation between Population Density and COVID-19 Cases during the Third Wave in Malaysia: Effect of the Delta Variant," IJERPH, MDPI, vol. 19(12), pages 1-17, June.
    6. Deqiao Tian & Yunzhou Yu & Yumin Wang & Tao Zheng, 2012. "Comparison of trends in the quantity and variety of Science Citation Index (SCI) literature on human pathogens between China and the United States," Scientometrics, Springer;Akadémiai Kiadó, vol. 93(3), pages 1019-1027, December.
    7. Ascioti, Fortunato A. & Mangano, Maria Cristina & Marcianò, Claudio & Sarà , Gianluca, 2022. "The sanitation service of seagrasses – Dependencies and implications for the estimation of avoided costs," Ecosystem Services, Elsevier, vol. 54(C).
    8. Hui-Yi Yeh & Kou-Huang Chen & Kow-Tong Chen, 2018. "Environmental Determinants of Infectious Disease Transmission: A Focus on One Health Concept," IJERPH, MDPI, vol. 15(6), pages 1-3, June.
    9. Nicodemo, Catia & Barzin, Samira & Lasserson, Daniel S. & Moscone, Francesco & Redding, Stuart & Shaikh, Mujaheed & Cavalli, Nicolò, 2020. "Measuring Geographical Disparities in England at the Time of COVID-19: Results Using a Composite Indicator of Population Vulnerability," IZA Discussion Papers 13757, Institute of Labor Economics (IZA).
    10. Wolfgang Brozek & Christof Falkenberg, 2021. "Industrial Animal Farming and Zoonotic Risk: COVID-19 as a Gateway to Sustainable Change? A Scoping Study," Sustainability, MDPI, vol. 13(16), pages 1-30, August.
    11. Mutsaers, Inge, 2015. "One-health approach as counter-measure against “autoimmune” responses in biosecurity," Social Science & Medicine, Elsevier, vol. 129(C), pages 123-130.
    12. Chun-Hsiang Chan & Tzai-Hung Wen, 2021. "Revisiting the Effects of High-Speed Railway Transfers in the Early COVID-19 Cross-Province Transmission in Mainland China," IJERPH, MDPI, vol. 18(12), pages 1-17, June.
    13. Ayat Abourashed & Laura Doornekamp & Santi Escartin & Constantianus J. M. Koenraadt & Maarten Schrama & Marlies Wagener & Frederic Bartumeus & Eric C. M. van Gorp, 2021. "The Potential Role of School Citizen Science Programs in Infectious Disease Surveillance: A Critical Review," IJERPH, MDPI, vol. 18(13), pages 1-18, June.
    14. Tobias S Brett & Pejman Rohani, 2020. "Dynamical footprints enable detection of disease emergence," PLOS Biology, Public Library of Science, vol. 18(5), pages 1-20, May.
    15. Alzahrani, Abdullah K. & Alshomrani, Ali Saleh & Pal, Nikhil & Samanta, Sudip, 2018. "Study of an eco-epidemiological model with Z-type control," Chaos, Solitons & Fractals, Elsevier, vol. 113(C), pages 197-208.
    16. Parker, Melissa & Baluku, Moses & Ozunga, Bono E. & Okello, Bob & Kermundu, Peter & Akello, Grace & MacGregor, Hayley & Leach, Melissa & Allen, Tim, 2022. "Epidemics and the Military: Responding to COVID-19 in Uganda," Social Science & Medicine, Elsevier, vol. 314(C).
    17. Qiong Jia & Yue Guo & Guanlin Wang & Stuart J. Barnes, 2020. "Big Data Analytics in the Fight against Major Public Health Incidents (Including COVID-19): A Conceptual Framework," IJERPH, MDPI, vol. 17(17), pages 1-21, August.
    18. Svetlana Malkhazova & Polina Pestina & Anna Prasolova & Dmitry Orlov, 2020. "Emerging Natural Focal Infectious Diseases in Russia: A Medical–Geographical Study," IJERPH, MDPI, vol. 17(21), pages 1-12, October.
    19. Hong, Sok Chul, 2013. "Malaria: An early indicator of later disease and work level," Journal of Health Economics, Elsevier, vol. 32(3), pages 612-632.
    20. Stefan Borsky & Hannah Hennighausen & Andrea Leiter & Keith Williges, 2020. "CITES and the Zoonotic Disease Content in International Wildlife Trade," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 76(4), pages 1001-1017, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:6:p:2249-:d:332035. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.