IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i22p9665-d447862.html
   My bibliography  Save this article

Water Use Efficiency and Sensitivity Assessment for Agricultural Production System from the Water Footprint Perspective

Author

Listed:
  • Weiwei Wang

    (Business School, Hohai University, Nanjing 211100, China
    College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, China)

  • Jigan Wang

    (Business School, Hohai University, Nanjing 211100, China
    State Key Laboratory of Hydrology Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098, China)

  • Xinchun Cao

    (College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, China
    State Key Laboratory of Hydrology Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098, China)

Abstract

The increasing shortage of water resources and the growing demand for crops make water use efficiency a decisive factor for the sustainable and healthy development of the agricultural system. In order to evaluate agricultural water use efficiency from the water footprint perspective, the current study constructed the comprehensive water efficiency (CWE) index based on eight single agricultural water use efficiency performance parameters. The water resources utilization and efficiency in the wheat production system of China from 2006 to 2015 were analyzed and the sensitivity of single indices for CWE was identified. The results show that the national crop water footprint (CWF) for wheat production was estimated to be, including 46.3% blue, 36.6% green and 17.0% blue components, respectively. The spatial distribution patterns of water use efficiency performance indices were different. CWE of the country was 0.387, showing an upward trend over time and decreased from the southeast to the northwest geographically. Crop water productivity (CWP), productive water ratio (PWR) and rainwater consumption ratio (RCR) turned out to be the first three sensitive parameters for CWE in China. The improvement of China’s overall CWE relied on reducing inefficient blue-green water use and increasing the output capacity for per unit water. Advanced agricultural water-saving technologies were in high need for goal achievement, especially for the Huang-Huai-Hai plain, which held more than 70% of Chinese wheat production and CWF. The results provide support for efficient utilization and sustainable development of water resources in the agricultural system.

Suggested Citation

  • Weiwei Wang & Jigan Wang & Xinchun Cao, 2020. "Water Use Efficiency and Sensitivity Assessment for Agricultural Production System from the Water Footprint Perspective," Sustainability, MDPI, vol. 12(22), pages 1-17, November.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:22:p:9665-:d:447862
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/22/9665/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/22/9665/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pereira, Helga & Marques, Rui Cunha, 2017. "An analytical review of irrigation efficiency measured using deterministic and stochastic models," Agricultural Water Management, Elsevier, vol. 184(C), pages 28-35.
    2. Cai, Ximing & McKinney, Daene C. & Rosegrant, Mark W., 2003. "Sustainability analysis for irrigation water management in the Aral Sea region," Agricultural Systems, Elsevier, vol. 76(3), pages 1043-1066, June.
    3. Bocchiola, D., 2015. "Impact of potential climate change on crop yield and water footprint of rice in the Po valley of Italy," Agricultural Systems, Elsevier, vol. 139(C), pages 223-237.
    4. Angela Gorgoglione & Javier Gregorio & Agustín Ríos & Jimena Alonso & Christian Chreties & Mónica Fossati, 2020. "Influence of Land Use/Land Cover on Surface-Water Quality of Santa Lucía River, Uruguay," Sustainability, MDPI, vol. 12(11), pages 1-19, June.
    5. Toro-Mujica, Paula & Aguilar, Claudio & Vera, Raúl & Cornejo, Karen, 2016. "A simulation-based approach for evaluating the effects of farm type, management, and rainfall on the water footprint of sheep grazing systems in a semi-arid environment," Agricultural Systems, Elsevier, vol. 148(C), pages 75-85.
    6. Ababaei, Behnam & Ramezani Etedali, Hadi, 2017. "Water footprint assessment of main cereals in Iran," Agricultural Water Management, Elsevier, vol. 179(C), pages 401-411.
    7. Wang, Weiguang & Yu, Zhongbo & Zhang, Wei & Shao, Quanxi & Zhang, Yiwei & Luo, Yufeng & Jiao, Xiyun & Xu, Junzeng, 2014. "Responses of rice yield, irrigation water requirement and water use efficiency to climate change in China: Historical simulation and future projections," Agricultural Water Management, Elsevier, vol. 146(C), pages 249-261.
    8. Cao, Xinchun & Zeng, Wen & Wu, Mengyang & Guo, Xiangping & Wang, Weiguang, 2020. "Hybrid analytical framework for regional agricultural water resource utilization and efficiency evaluation," Agricultural Water Management, Elsevier, vol. 231(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marcelo Werneck Barbosa & José M. Cansino, 2022. "A Water Footprint Management Construct in Agri-Food Supply Chains: A Content Validity Analysis," Sustainability, MDPI, vol. 14(9), pages 1-17, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cao, Xinchun & Zeng, Wen & Wu, Mengyang & Guo, Xiangping & Wang, Weiguang, 2020. "Hybrid analytical framework for regional agricultural water resource utilization and efficiency evaluation," Agricultural Water Management, Elsevier, vol. 231(C).
    2. Ding, Yimin & Wang, Weiguang & Song, Ruiming & Shao, Quanxi & Jiao, Xiyun & Xing, Wanqiu, 2017. "Modeling spatial and temporal variability of the impact of climate change on rice irrigation water requirements in the middle and lower reaches of the Yangtze River, China," Agricultural Water Management, Elsevier, vol. 193(C), pages 89-101.
    3. Maisa’a W. Shammout, 2023. "Calculation and Management of Water Supply and Demand under Land Use/Cover Changes in the Yarmouk River Basin Governorates in Jordan," Land, MDPI, vol. 12(8), pages 1-13, July.
    4. Abrahao, R. & Causapé, J. & García-Garizábal, I. & Merchán, D., 2011. "Implementing irrigation: Salt and nitrate exported from the Lerma basin (Spain)," Agricultural Water Management, Elsevier, vol. 102(1), pages 105-112.
    5. Xu, Yingying & Lü, Haishen & Yagci, Ali Levent & Zhu, Yonghua & Liu, Di & Wang, Qimeng & Xu, Haiting & Pan, Ying & Su, Jianbin, 2024. "Influence of groundwater on the propagation of meteorological drought to agricultural drought during crop growth periods: A case study in Huaibei Plain," Agricultural Water Management, Elsevier, vol. 305(C).
    6. Feng Huang & Baoguo Li, 2020. "What is the Redline Water Withdrawal for Crop Production in China?—Projection to 2030 Derived from the Past Twenty-Year Trajectory," Sustainability, MDPI, vol. 12(10), pages 1-14, May.
    7. Yunfei Feng & Yi Zhang & Zhaodan Wu & Quanliang Ye & Xinchun Cao, 2023. "Evaluation of Agricultural Eco-Efficiency and Its Spatiotemporal Differentiation in China, Considering Green Water Consumption and Carbon Emissions Based on Undesired Dynamic SBM-DEA," Sustainability, MDPI, vol. 15(4), pages 1-26, February.
    8. Kaiwen Chen & Shuang’en Yu & Tao Ma & Jihui Ding & Pingru He & Yao Li & Yan Dai & Guangquan Zeng, 2022. "Modeling the Water and Nitrogen Management Practices in Paddy Fields with HYDRUS-1D," Agriculture, MDPI, vol. 12(7), pages 1-18, June.
    9. Michailidis, Anastasios & Nastis, Stefanos A. & Loizou, Efstratios & Mattas, Konstadinos, 2010. "The adoption of water saving irrigation practices in the Region of West Macedonia," 120th Seminar, September 2-4, 2010, Chania, Crete 109388, European Association of Agricultural Economists.
    10. Gao, Jie & Xie, Pengxuan & Zhuo, La & Shang, Kehui & Ji, Xiangxiang & Wu, Pute, 2021. "Water footprints of irrigated crop production and meteorological driving factors at multiple temporal scales," Agricultural Water Management, Elsevier, vol. 255(C).
    11. Ruifan Xu & Jianzhong Gao, 2023. "Evolutionary Trends, Regional Differences and Influencing Factors of the Green Efficiency of Agricultural Water Use in China Based on WF-GTWR Model," IJERPH, MDPI, vol. 20(3), pages 1-24, January.
    12. Zhang, Qingsong & Sun, Jiahao & Zhang, Guangxin & Liu, Xuemei & Wu, Yanfeng & Sun, Jingxuan & Hu, Boting, 2023. "Spatiotemporal dynamics of water supply–demand patterns under large-scale paddy expansion: Implications for regional sustainable water resource management," Agricultural Water Management, Elsevier, vol. 285(C).
    13. Bocchiola, D. & Brunetti, L. & Soncini, A. & Polinelli, F. & Gianinetto, M., 2019. "Impact of climate change on agricultural productivity and food security in the Himalayas: A case study in Nepal," Agricultural Systems, Elsevier, vol. 171(C), pages 113-125.
    14. Yu Zhang & Qing Tian & Huan Hu & Miao Yu, 2019. "Water Footprint of Food Consumption by Chinese Residents," IJERPH, MDPI, vol. 16(20), pages 1-15, October.
    15. Wang, Linlin & Li, Lingling & Xie, Junhong & Luo, Zhuzhu & Sumera, Anwar & Zechariah, Effah & Fudjoe, Setor Kwami & Palta, Jairo A. & Chen, Yinglong, 2022. "Does plastic mulching reduce water footprint in field crops in China? A meta-analysis," Agricultural Water Management, Elsevier, vol. 260(C).
    16. Sheng, Jichuan & Qiu, Wenge, 2022. "Water-use technical efficiency and income: Evidence from China's South-North Water Transfer Project," Technological Forecasting and Social Change, Elsevier, vol. 184(C).
    17. Gao, Ya & Sun, Chen & Ramos, Tiago B. & Huo, Zailin & Huang, Guanhua & Xu, Xu, 2023. "Modeling nitrogen dynamics and biomass production in rice paddy fields of cold regions with the ORYZA-N model," Ecological Modelling, Elsevier, vol. 475(C).
    18. Castagna, Andrés & Matonte, Federico & Mauttone, Antonio & Rodríguez-Gallego, Lorena & Blumetto, Oscar, 2024. "Land use planning to minimize the export of phosphorus: An optimization model for dairy production at a catchment area scale," Land Use Policy, Elsevier, vol. 138(C).
    19. Traore, Seydou & Zhang, Lei & Guven, Aytac & Fipps, Guy, 2020. "Rice yield response forecasting tool (YIELDCAST) for supporting climate change adaptation decision in Sahel," Agricultural Water Management, Elsevier, vol. 239(C).
    20. Jiayue Wang & Liangjie Xin & Xue Wang & Min Jiang, 2022. "The Impact of Climate Change and Grain Planting Structure Change on Irrigation Water Requirement for Main Grain Crops in Mainland China," Land, MDPI, vol. 11(12), pages 1-22, November.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:22:p:9665-:d:447862. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.