IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i22p9377-d443354.html
   My bibliography  Save this article

Water-Energy Nexus: A Pathway of Reaching the Zero Net Carbon in Wastewater Treatment Plants

Author

Listed:
  • Beatriz Del Río-Gamero

    (Department of Process Engineering, Industrial and Civil Engineering School, Universidad de Las Palmas de Gran Canaria, Campus de Tafira Baja, 35017 Las Palmas de Gran Canaria, Spain)

  • Alejandro Ramos-Martín

    (Department of Process Engineering, Industrial and Civil Engineering School, Universidad de Las Palmas de Gran Canaria, Campus de Tafira Baja, 35017 Las Palmas de Gran Canaria, Spain)

  • Noemi Melián-Martel

    (Department of Process Engineering, Industrial and Civil Engineering School, Universidad de Las Palmas de Gran Canaria, Campus de Tafira Baja, 35017 Las Palmas de Gran Canaria, Spain)

  • Sebastián Pérez-Báez

    (Department of Process Engineering, Industrial and Civil Engineering School, Universidad de Las Palmas de Gran Canaria, Campus de Tafira Baja, 35017 Las Palmas de Gran Canaria, Spain)

Abstract

The water-energy nexus, together with the need for sustainable management of these interconnected resources, has attracted growing attention from the scientific community. This paper focuses on this nexus from the point of view of the energy that is required by wastewater treatment plants, which are intensive energy consumers and major emitters of greenhouse gases. The main objective of the study is to investigate the possible use of a wastewater plant’s internal chemical, potential, and kinetic energy, and the addition of external renewable technologies with a view to achieving clean energy consumption and reducing greenhouse gas emissions. For this purpose, an analysis is made of the feasibility of introducing alternative technologies—anaerobic digestion, hydraulic turbines, wind turbines, and photovoltaic modules— to meet the plant’s energy needs. The plant chosen as case study (Jinamar plant, Canary Islands, Spain) has an energy consumption of 2956 MWh/year, but the employed methodological framework is suitable for other plants in locations where the renewable energy potential has previously been analyzed. The results show that a renewable energy production of 3396 MWh/year can be obtained, more than enough to meet plant consumption, but also confirm the need for an energy storage system, due to seasonal variability in energy resource availability. In terms of climate change mitigation, the emission of 2754 tons/year of greenhouse gases is avoided. In addition, the economic viability of the proposed system is also confirmed.

Suggested Citation

  • Beatriz Del Río-Gamero & Alejandro Ramos-Martín & Noemi Melián-Martel & Sebastián Pérez-Báez, 2020. "Water-Energy Nexus: A Pathway of Reaching the Zero Net Carbon in Wastewater Treatment Plants," Sustainability, MDPI, vol. 12(22), pages 1-18, November.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:22:p:9377-:d:443354
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/22/9377/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/22/9377/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ravi Kant Bhatia & Deepak Sakhuja & Shyam Mundhe & Abhishek Walia, 2020. "Renewable Energy Products through Bioremediation of Wastewater," Sustainability, MDPI, vol. 12(18), pages 1-24, September.
    2. Gu, Yifan & Li, Yue & Li, Xuyao & Luo, Pengzhou & Wang, Hongtao & Robinson, Zoe P. & Wang, Xin & Wu, Jiang & Li, Fengting, 2017. "The feasibility and challenges of energy self-sufficient wastewater treatment plants," Applied Energy, Elsevier, vol. 204(C), pages 1463-1475.
    3. Hamiche, Ait Mimoune & Stambouli, Amine Boudghene & Flazi, Samir, 2016. "A review of the water-energy nexus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 319-331.
    4. Khosravi, A. & Koury, R.N.N. & Machado, L. & Pabon, J.J.G., 2018. "Energy, exergy and economic analysis of a hybrid renewable energy with hydrogen storage system," Energy, Elsevier, vol. 148(C), pages 1087-1102.
    5. Picardo, Alberto & Soltero, Victor M. & Peralta, M. Estela & Chacartegui, Ricardo, 2019. "District heating based on biogas from wastewater treatment plant," Energy, Elsevier, vol. 180(C), pages 649-664.
    6. Guerrero-Lemus, Ricardo & González-Díaz, Benjamín & Ríos, Gerardo & Dib, Ramzi N., 2015. "Study of the new Spanish legislation applied to an insular system that has achieved grid parity on PV and wind energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 426-436.
    7. Tyagi, Vinay Kumar & Lo, Shang-Lien, 2013. "Sludge: A waste or renewable source for energy and resources recovery?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 708-728.
    8. Guilera, Jordi & Andreu, Teresa & Basset, Núria & Boeltken, Tim & Timm, Friedemann & Mallol, Ignasi & Morante, Joan Ramon, 2020. "Synthetic natural gas production from biogas in a waste water treatment plant," Renewable Energy, Elsevier, vol. 146(C), pages 1301-1308.
    9. Ayodele, T.R. & Ogunjuyigbe, A.S.O., 2015. "Mitigation of wind power intermittency: Storage technology approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 447-456.
    10. Kim, Jiwon & Choi, Hyunho & Kim, Samuel & Yu, Jaecheul, 2018. "Feasibility analysis of introducing renewable energy systems in environmental basic facilities: A case study in Busan, South Korea," Energy, Elsevier, vol. 150(C), pages 702-708.
    11. Stanisław Wacławek & Klaudiusz Grübel & Daniele Silvestri & Vinod V. T. Padil & Maria Wacławek & Miroslav Černík & Rajender S. Varma, 2018. "Disintegration of Wastewater Activated Sludge (WAS) for Improved Biogas Production," Energies, MDPI, vol. 12(1), pages 1-15, December.
    12. Nguyen, Hai Tra & Safder, Usman & Nhu Nguyen, X.Q. & Yoo, ChangKyoo, 2020. "Multi-objective decision-making and optimal sizing of a hybrid renewable energy system to meet the dynamic energy demands of a wastewater treatment plant," Energy, Elsevier, vol. 191(C).
    13. Gil, Antoni & Medrano, Marc & Martorell, Ingrid & Lázaro, Ana & Dolado, Pablo & Zalba, Belén & Cabeza, Luisa F., 2010. "State of the art on high temperature thermal energy storage for power generation. Part 1--Concepts, materials and modellization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 31-55, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gabriel Nasser Doyle de Doile & Paulo Rotella Junior & Luiz Célio Souza Rocha & Ivan Bolis & Karel Janda & Luiz Moreira Coelho Junior, 2021. "Hybrid Wind and Solar Photovoltaic Generation with Energy Storage Systems: A Systematic Literature Review and Contributions to Technical and Economic Regulations," Energies, MDPI, vol. 14(20), pages 1-22, October.
    2. Xu, Jiuping & Zhao, Chuandang & Wang, Fengjuan & Yang, Guocan, 2022. "Industrial decarbonisation oriented distributed renewable generation towards wastewater treatment sector: Case from the Yangtze River Delta region in China," Energy, Elsevier, vol. 256(C).
    3. Zhou, Nan & Zhang, Jingjing & Khanna, Nina & Fridley, David & Jiang, Shan & Liu, Xu, 2019. "Intertwined impacts of water, energy development, and carbon emissions in China," Applied Energy, Elsevier, vol. 238(C), pages 78-91.
    4. Elia Judith Martínez & Ana Sotres & Cristián B. Arenas & Daniel Blanco & Olegario Martínez & Xiomar Gómez, 2019. "Improving Anaerobic Digestion of Sewage Sludge by Hydrogen Addition: Analysis of Microbial Populations and Process Performance," Energies, MDPI, vol. 12(7), pages 1-15, March.
    5. Gil, Antoni & Barreneche, Camila & Moreno, Pere & Solé, Cristian & Inés Fernández, A. & Cabeza, Luisa F., 2013. "Thermal behaviour of d-mannitol when used as PCM: Comparison of results obtained by DSC and in a thermal energy storage unit at pilot plant scale," Applied Energy, Elsevier, vol. 111(C), pages 1107-1113.
    6. Lazaros Aresti & Paul Christodoulides & Gregoris P. Panayiotou & Georgios Florides, 2020. "The Potential of Utilizing Buildings’ Foundations as Thermal Energy Storage (TES) Units from Solar Plate Collectors," Energies, MDPI, vol. 13(11), pages 1-14, May.
    7. Cabrera-Tobar, Ana & Bullich-Massagué, Eduard & Aragüés-Peñalba, Mònica & Gomis-Bellmunt, Oriol, 2016. "Review of advanced grid requirements for the integration of large scale photovoltaic power plants in the transmission system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 971-987.
    8. Claire Villette & Loïc Maurer & Julie Zumsteg & Jérôme Mutterer & Adrien Wanko & Dimitri Heintz, 2023. "Mass spectrometry imaging for biosolids characterization to assess ecological or health risks before reuse," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    9. Andrea Barbaresi & Mirko Morini & Agostino Gambarotta, 2022. "Review on the Status of the Research on Power-to-Gas Experimental Activities," Energies, MDPI, vol. 15(16), pages 1-32, August.
    10. Ayodele, T.R. & Ogunjuyigbe, A.S.O. & Odigie, O. & Munda, J.L., 2018. "A multi-criteria GIS based model for wind farm site selection using interval type-2 fuzzy analytic hierarchy process: The case study of Nigeria," Applied Energy, Elsevier, vol. 228(C), pages 1853-1869.
    11. khanmohammadi, Shoaib & Saadat-Targhi, Morteza, 2019. "Performance enhancement of an integrated system with solar flat plate collector for hydrogen production using waste heat recovery," Energy, Elsevier, vol. 171(C), pages 1066-1076.
    12. Zhou, Yuanchun & Ma, Mengdie & Gao, Peiqi & Xu, Qiming & Bi, Jun & Naren, Tuya, 2019. "Managing water resources from the energy - water nexus perspective under a changing climate: A case study of Jiangsu province, China," Energy Policy, Elsevier, vol. 126(C), pages 380-390.
    13. Papapostolou, Christiana M. & Kondili, Emilia M. & Zafirakis, Dimitris P. & Tzanes, Georgios T., 2020. "Sustainable water supply systems for the islands: The integration with the energy problem," Renewable Energy, Elsevier, vol. 146(C), pages 2577-2588.
    14. Cui, Ye & E, Hanyu & Pedrycz, Witold & Fayek, Aminah Robinson, 2022. "A granular multicriteria group decision making for renewable energy planning problems," Renewable Energy, Elsevier, vol. 199(C), pages 1047-1059.
    15. Fukahori, Ryo & Nomura, Takahiro & Zhu, Chunyu & Sheng, Nan & Okinaka, Noriyuki & Akiyama, Tomohiro, 2016. "Macro-encapsulation of metallic phase change material using cylindrical-type ceramic containers for high-temperature thermal energy storage," Applied Energy, Elsevier, vol. 170(C), pages 324-328.
    16. Jean-Baptiste Bahers & Paula Higuera & Anne Ventura & Nicolas Antheaume, 2020. "The “Metal-Energy-Construction Mineral” Nexus in the Island Metabolism: The Case of the Extractive Economy of New Caledonia," Sustainability, MDPI, vol. 12(6), pages 1-18, March.
    17. Marcin Zieliński & Marcin Dębowski & Joanna Kazimierowicz, 2021. "The Effect of Static Magnetic Field on Methanogenesis in the Anaerobic Digestion of Municipal Sewage Sludge," Energies, MDPI, vol. 14(3), pages 1-16, January.
    18. Bruch, A. & Molina, S. & Esence, T. & Fourmigué, J.F. & Couturier, R., 2017. "Experimental investigation of cycling behaviour of pilot-scale thermal oil packed-bed thermal storage system," Renewable Energy, Elsevier, vol. 103(C), pages 277-285.
    19. Mónica Vergara-Araya & Verena Hilgenfeldt & Di Peng & Heidrun Steinmetz & Jürgen Wiese, 2021. "Modelling to Lower Energy Consumption in a Large WWTP in China While Optimising Nitrogen Removal," Energies, MDPI, vol. 14(18), pages 1-24, September.
    20. Dai, Jiangyu & Wu, Shiqiang & Han, Guoyi & Weinberg, Josh & Xie, Xinghua & Wu, Xiufeng & Song, Xingqiang & Jia, Benyou & Xue, Wanyun & Yang, Qianqian, 2018. "Water-energy nexus: A review of methods and tools for macro-assessment," Applied Energy, Elsevier, vol. 210(C), pages 393-408.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:22:p:9377-:d:443354. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.