IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i21p9238-d440999.html
   My bibliography  Save this article

Identifying Value-Increasing Actions for Cultural Heritage Assets through Sensitivity Analysis of Multicriteria Evaluation Results

Author

Listed:
  • Emanuele Salerno

    (National Research Council of Italy, Institute of Information Science and Technologies, Via Moruzzi 1, 56124 Pisa, Italy)

Abstract

This paper presents a brief overview of multicriteria decision making (MCDM) as applied to the evaluation of adaptive reuse projects for cultural heritage assets and proposes a strategy to plan interventions to increase their value. The value of an object can be defined from its fitness to fulfil specified objectives, its significance to the people who own or use it, its potential to produce revenues, and a host of other criteria depending on its nature. These criteria are often subjective, relying on judgements issued by several experts, stakeholders and decision makers. This is why the MCDM methods need to formalize the problem so as to make it suitable to be treated quantitatively. Moreover, its sensitivity to variable opinions must be studied to check the stability of the result. We propose to leverage sensitivity analysis to identify the lines of intervention that promise to be the most effective to increase the value of the asset. A simulated example illustrates this strategy. This approach promises to be useful when assessing the sustainability of a reuse or redevelopment project in the cases where the final destination of the asset is still under examination.

Suggested Citation

  • Emanuele Salerno, 2020. "Identifying Value-Increasing Actions for Cultural Heritage Assets through Sensitivity Analysis of Multicriteria Evaluation Results," Sustainability, MDPI, vol. 12(21), pages 1-13, November.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:21:p:9238-:d:440999
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/21/9238/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/21/9238/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ardalan Bafahm & Minghe Sun, 2019. "Some Conflicting Results in the Analytic Hierarchy Process," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 18(02), pages 465-486, March.
    2. Lucia Della Spina, 2020. "Adaptive Sustainable Reuse for Cultural Heritage: A Multiple Criteria Decision Aiding Approach Supporting Urban Development Processes," Sustainability, MDPI, vol. 12(4), pages 1-20, February.
    3. Peter C. Fishburn, 1967. "Letter to the Editor—Additive Utilities with Incomplete Product Sets: Application to Priorities and Assignments," Operations Research, INFORMS, vol. 15(3), pages 537-542, June.
    4. Antonio Nesticò & Maria Macchiaroli & Ornella Pipolo, 2015. "Costs and Benefits in the Recovery of Historic Buildings: The Application of an Economic Model," Sustainability, MDPI, vol. 7(11), pages 1-16, November.
    5. C M Brugha, 2004. "Structure of multi-criteria decision-making," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(11), pages 1156-1168, November.
    6. Chen, Hongyi & Kocaoglu, Dundar F., 2008. "A sensitivity analysis algorithm for hierarchical decision models," European Journal of Operational Research, Elsevier, vol. 185(1), pages 266-288, February.
    7. Opricovic, Serafim & Tzeng, Gwo-Hshiung, 2004. "Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS," European Journal of Operational Research, Elsevier, vol. 156(2), pages 445-455, July.
    8. Rezaei, Jafar, 2015. "Best-worst multi-criteria decision-making method," Omega, Elsevier, vol. 53(C), pages 49-57.
    9. Beynon, Malcolm & Curry, Bruce & Morgan, Peter, 2000. "The Dempster-Shafer theory of evidence: an alternative approach to multicriteria decision modelling," Omega, Elsevier, vol. 28(1), pages 37-50, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Oluwatobi Mary Owojori & Chioma Sylvia Okoro & Nicholas Chileshe, 2021. "Current Status and Emerging Trends on the Adaptive Reuse of Buildings: A Bibliometric Analysis," Sustainability, MDPI, vol. 13(21), pages 1-17, October.
    2. AbdulHafeez Muhammad & Ansar Siddique & Quadri Noorulhasan Naveed & Uzma Khaliq & Ali M. Aseere & Mohd Abul Hasan & Mohamed Rafik N. Qureshi & Basit Shahzad, 2021. "Evaluating Usability of Academic Websites through a Fuzzy Analytical Hierarchical Process," Sustainability, MDPI, vol. 13(4), pages 1-22, February.
    3. Patricia Hernández-Lamas & Beatriz Cabau-Anchuelo & Óscar de Castro-Cuartero & Jorge Bernabéu-Larena, 2021. "Mobile Applications, Geolocation and Information Technologies for the Study and Communication of the Heritage Value of Public Works," Sustainability, MDPI, vol. 13(4), pages 1-25, February.
    4. Marta Dell’Ovo & Federico Dell’Anna & Raffaella Simonelli & Leopoldo Sdino, 2021. "Enhancing the Cultural Heritage through Adaptive Reuse. A Multicriteria Approach to Evaluate the Castello Visconteo in Cusago (Italy)," Sustainability, MDPI, vol. 13(8), pages 1-29, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mladen Krstić & Giulio Paolo Agnusdei & Pier Paolo Miglietta & Snežana Tadić & Violeta Roso, 2022. "Applicability of Industry 4.0 Technologies in the Reverse Logistics: A Circular Economy Approach Based on COmprehensive Distance Based RAnking (COBRA) Method," Sustainability, MDPI, vol. 14(9), pages 1-30, May.
    2. Maghsoodi, Abtin Ijadi, 2023. "Cryptocurrency portfolio allocation using a novel hybrid and predictive big data decision support system," Omega, Elsevier, vol. 115(C).
    3. Zheng Yuan & Baohua Wen & Cheng He & Jin Zhou & Zhonghua Zhou & Feng Xu, 2022. "Application of Multi-Criteria Decision-Making Analysis to Rural Spatial Sustainability Evaluation: A Systematic Review," IJERPH, MDPI, vol. 19(11), pages 1-31, May.
    4. Ioannis Sitaridis & Fotis Kitsios, 2020. "Competitiveness analysis and evaluation of entrepreneurial ecosystems: a multi-criteria approach," Annals of Operations Research, Springer, vol. 294(1), pages 377-399, November.
    5. Bartłomiej Kizielewicz & Jarosław Wątróbski & Wojciech Sałabun, 2020. "Identification of Relevant Criteria Set in the MCDA Process—Wind Farm Location Case Study," Energies, MDPI, vol. 13(24), pages 1-40, December.
    6. Mete, Suleyman & Yucesan, Melih & Gul, Muhammet & Ozceylan, Eren, 2023. "An integrated hybrid MCDM approach to evaluate countries’ COVID-19 risks," Socio-Economic Planning Sciences, Elsevier, vol. 90(C).
    7. Kai Wang & Zhe Wang & Jun Deng & Yuanyuan Feng & Quanfang Li, 2022. "Study on the Evaluation of Emergency Management Capacity of Resilient Communities by the AHP-TOPSIS Method," IJERPH, MDPI, vol. 19(23), pages 1-14, December.
    8. Ridha, Hussein Mohammed & Gomes, Chandima & Hizam, Hashim & Ahmadipour, Masoud & Heidari, Ali Asghar & Chen, Huiling, 2021. "Multi-objective optimization and multi-criteria decision-making methods for optimal design of standalone photovoltaic system: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    9. Xiao-Kang Wang & Wen-Hui Hou & Chao Song & Min-Hui Deng & Yong-Yi Li & Jian-Qiang Wang, 2021. "BW-MaxEnt: A Novel MCDM Method for Limited Knowledge," Mathematics, MDPI, vol. 9(14), pages 1-17, July.
    10. Chao Song & Jian-Qiang Wang & Jun-Bo Li, 2020. "New Framework for Quality Function Deployment Using Linguistic Z-Numbers," Mathematics, MDPI, vol. 8(2), pages 1-20, February.
    11. Mladen Krstić & Giulio Paolo Agnusdei & Snežana Tadić & Milovan Kovač & Pier Paolo Miglietta, 2023. "A Novel Axial-Distance-Based Aggregated Measurement (ADAM) Method for the Evaluation of Agri-Food Circular-Economy-Based Business Models," Mathematics, MDPI, vol. 11(6), pages 1-27, March.
    12. Alexander Kuan Daiy & Kao-Yi Shen & Jim-Yuh Huang & Tom Meng-Yen Lin, 2021. "A Hybrid MCDM Model for Evaluating Open Banking Business Partners," Mathematics, MDPI, vol. 9(6), pages 1-19, March.
    13. Göçmen Polat, Elifcan & Yücesan, Melih & Gül, Muhammet, 2023. "A comparative framework for criticality assessment of strategic raw materials in Turkey," Resources Policy, Elsevier, vol. 82(C).
    14. Máximo Méndez & Mariano Frutos & Fabio Miguel & Ricardo Aguasca-Colomo, 2020. "TOPSIS Decision on Approximate Pareto Fronts by Using Evolutionary Algorithms: Application to an Engineering Design Problem," Mathematics, MDPI, vol. 8(11), pages 1-27, November.
    15. Antonio Nesticò & Piera Somma, 2019. "Comparative Analysis of Multi-Criteria Methods for the Enhancement of Historical Buildings," Sustainability, MDPI, vol. 11(17), pages 1-19, August.
    16. Ferenc Bognár & Balázs Szentes & Petra Benedek, 2022. "Development of the PRISM Risk Assessment Method Based on a Multiple AHP-TOPSIS Approach," Risks, MDPI, vol. 10(11), pages 1-16, November.
    17. Thomas L. Saaty & Daji Ergu, 2015. "When is a Decision-Making Method Trustworthy? Criteria for Evaluating Multi-Criteria Decision-Making Methods," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 14(06), pages 1171-1187, November.
    18. Mehdi KESHAVARZ GHORABAEE & Edmundas Kazimieras ZAVADSKAS & Zenonas TURSKIS & Jurgita ANTUCHEVICIENE, 2016. "A New Combinative Distance-Based Assessment(Codas) Method For Multi-Criteria Decision-Making," ECONOMIC COMPUTATION AND ECONOMIC CYBERNETICS STUDIES AND RESEARCH, Faculty of Economic Cybernetics, Statistics and Informatics, vol. 50(3), pages 25-44.
    19. Daniel R. Georgiadis & Thomas A. Mazzuchi & Shahram Sarkani, 2013. "Using multi criteria decision making in analysis of alternatives for selection of enabling technology," Systems Engineering, John Wiley & Sons, vol. 16(3), pages 287-303, September.
    20. Cinelli, Marco & Kadziński, Miłosz & Miebs, Grzegorz & Gonzalez, Michael & Słowiński, Roman, 2022. "Recommending multiple criteria decision analysis methods with a new taxonomy-based decision support system," European Journal of Operational Research, Elsevier, vol. 302(2), pages 633-651.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:21:p:9238-:d:440999. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.