IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i20p8582-d429245.html
   My bibliography  Save this article

The Water-Energy-Food Nexus as an Adaptation Strategy for Achieving Sustainable Livelihoods at a Local Level

Author

Listed:
  • Luxon Nhamo

    (Water Research Commission of South Africa (WRC), Lynnwood Manor, Pretoria 0081, South Africa
    Centre for Transformative Agricultural and Food Systems (CTAFS), University of KwaZulu-Natal (UKZN), Scottsville, Pietermaritzburg 3209, South Africa)

  • Bekithemba Ndlela

    (College of Agriculture and Environmental Sciences (CAES), University of South Africa (UNISA), Pretoria 0003, South Africa)

  • Sylvester Mpandeli

    (Water Research Commission of South Africa (WRC), Lynnwood Manor, Pretoria 0081, South Africa
    School of Environmental Sciences, University of Venda, Thohoyandou 0950, South Africa)

  • Tafadzwanashe Mabhaudhi

    (Centre for Transformative Agricultural and Food Systems (CTAFS), University of KwaZulu-Natal (UKZN), Scottsville, Pietermaritzburg 3209, South Africa)

Abstract

The imbalance between resource availability and population increase requires transformative approaches to inform policy, decision-making and practice on coherent adaptation strategies for improved livelihoods and resilient communities. Nexus approaches are built on an understanding that natural processes do not operate in isolation within a system; hence, an emergent challenge in one unit obviously disturbs the whole system. This study applied an integrated water-energy-food (WEF) nexus analytical model to holistically assess resource availability, distribution, use and management at a local level in Sakhisizwe Local Municipality, South Africa. The aim was to inform strategies and guidelines on improving livelihoods of resource-poor rural communities. The calculated municipal composite index of 0.185, coupled with a deformed spider graph, represents a marginally sustainable resource management result. The analysis simplified the relationship between the intricately interlinked socio-ecological components and facilitated the identification of priority areas for intervention. The process provides pathways that steer resource use efficiencies and attainment of Sustainable Development Goals (SDGs). Unlike current linear approaches, integrated and transformative approaches like the WEF nexus provide a multidisciplinary platform for stakeholder engagement to sustainably enhance cross-sectoral coordination of resource management and harmonisation of policies and strategies. The WEF nexus approach is useful for informing decisions on improving livelihoods, enhancing resource securities, identifying priority areas for intervention and providing transformative pathways towards sustainable development.

Suggested Citation

  • Luxon Nhamo & Bekithemba Ndlela & Sylvester Mpandeli & Tafadzwanashe Mabhaudhi, 2020. "The Water-Energy-Food Nexus as an Adaptation Strategy for Achieving Sustainable Livelihoods at a Local Level," Sustainability, MDPI, vol. 12(20), pages 1-16, October.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:20:p:8582-:d:429245
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/20/8582/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/20/8582/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Reed, M.S. & Podesta, G. & Fazey, I. & Geeson, N. & Hessel, R. & Hubacek, K. & Letson, D. & Nainggolan, D. & Prell, C. & Rickenbach, M.G. & Ritsema, C. & Schwilch, G. & Stringer, L.C. & Thomas, A.D., 2013. "Combining analytical frameworks to assess livelihood vulnerability to climate change and analyse adaptation options," Ecological Economics, Elsevier, vol. 94(C), pages 66-77.
    2. van Koppen, Barbara & Nhamo, Luxon & Cai, Xueliang & Gabriel, M. J. & Sekgala, M. & Shikwambana, S. & Tshikolomo, K. & Nevhutanda, S. & Matlala, B. & Manyama, D., 2017. "Smallholder irrigation schemes in the Limpopo Province, South Africa," IWMI Water Policy Briefings 257964, International Water Management Institute.
    3. Kumar, Abhishek & Sah, Bikash & Singh, Arvind R. & Deng, Yan & He, Xiangning & Kumar, Praveen & Bansal, R.C., 2017. "A review of multi criteria decision making (MCDM) towards sustainable renewable energy development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 596-609.
    4. Raya Marina Stephan & Rabi H. Mohtar & Bassel Daher & Antonio Embid Irujo & Astrid Hillers & J. Carl Ganter & Louise Karlberg & Liber Martin & Saeed Nairizi & Diego J. Rodriguez & Will Sarni, 2018. "Water–energy–food nexus: a platform for implementing the Sustainable Development Goals," Water International, Taylor & Francis Journals, vol. 43(3), pages 472-479, April.
    5. Nhamo, Luxon & Ndlela, B. & Nhemachena, Charles & Mabhaudhi, T. & Mpandeli, S. & Matchaya, Greenwell, 2018. "The water-energy-food nexus: climate risks and opportunities in southern Africa," Papers published in Journals (Open Access), International Water Management Institute, pages 10(5):1-18..
    6. Indre Siksnelyte & Edmundas Kazimieras Zavadskas & Dalia Streimikiene & Deepak Sharma, 2018. "An Overview of Multi-Criteria Decision-Making Methods in Dealing with Sustainable Energy Development Issues," Energies, MDPI, vol. 11(10), pages 1-21, October.
    7. Golam Rasul & Bikash Sharma, 2016. "The nexus approach to water–energy–food security: an option for adaptation to climate change," Climate Policy, Taylor & Francis Journals, vol. 16(6), pages 682-702, August.
    8. Nhamo, L. & Mabhaudhi, T. & Mpandeli, S. & Dickens, Chris & Nhemachena, C. & Senzanje, A. & Naidoo, D. & Liphadzi, S. & Modi, A. T., 2020. "An integrative analytical model for the water-energy-food nexus: South Africa case study," Papers published in Journals (Open Access), International Water Management Institute, pages 109:15-124..
    9. Kate E. Jones & Nikkita G. Patel & Marc A. Levy & Adam Storeygard & Deborah Balk & John L. Gittleman & Peter Daszak, 2008. "Global trends in emerging infectious diseases," Nature, Nature, vol. 451(7181), pages 990-993, February.
    10. Alexandra Jurgilevich & Traci Birge & Johanna Kentala-Lehtonen & Kaisa Korhonen-Kurki & Janna Pietikäinen & Laura Saikku & Hanna Schösler, 2016. "Transition towards Circular Economy in the Food System," Sustainability, MDPI, vol. 8(1), pages 1-14, January.
    11. Saaty, Thomas L., 1990. "Eigenvector and logarithmic least squares," European Journal of Operational Research, Elsevier, vol. 48(1), pages 156-160, September.
    12. Mpandeli, S. & Nhamo, Luxon & Moeletsi, M. & Masupha, T. & Magidi, J. & Tshikolomo, K. & Liphadzi, S. & Naidoo, D. & Mabhaudhi, T., 2019. "Assessing climate change and adaptive capacity at local scale using observed and remotely sensed data," Papers published in Journals (Open Access), International Water Management Institute, pages 1-26:100240.
    13. Rebecca Jo Stormes Newman & Claudia Capitani & Colin Courtney-Mustaphi & Jessica Paula Rose Thorn & Rebecca Kariuki & Charis Enns & Robert Marchant, 2020. "Integrating Insights from Social-Ecological Interactions into Sustainable Land Use Change Scenarios for Small Islands in the Western Indian Ocean," Sustainability, MDPI, vol. 12(4), pages 1-22, February.
    14. Ingrid Boas & Frank Biermann & Norichika Kanie, 2016. "Cross-sectoral strategies in global sustainability governance: towards a nexus approach," International Environmental Agreements: Politics, Law and Economics, Springer, vol. 16(3), pages 449-464, June.
    15. Matchaya, Greenwell & Nhamo, Luxon & Nhlengethwa, Sibusiso & Nhemachena, Charles, 2019. "An overview of water markets in southern Africa: an option for water management in times of scarcity," Papers published in Journals (Open Access), International Water Management Institute, pages 11(5):1-16..
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Omolola M. Adeola & Abel Ramoelo & Brian Mantlana & Oscar Mokotedi & Wongalethu Silwana & Philemon Tsele, 2022. "Review of Publications on the Water-Energy-Food Nexus and Climate Change Adaptation Using Bibliometric Analysis: A Case Study of Africa," Sustainability, MDPI, vol. 14(20), pages 1-15, October.
    2. Jue Wang & Keyi Ju & Xiaozhuo Wei, 2022. "Where Will ‘Water-Energy-Food’ Research Go Next?—Visualisation Review and Prospect," Sustainability, MDPI, vol. 14(13), pages 1-19, June.
    3. Goldin, J. & Nhamo, L. & Ncube, B. & Zvimba, J. N. & Petja, B. & Mpandeli, S. & Nomquphu, W. & Hlophe-Ginindza, S. & Greeff-Laubscher, M. R. & Molose, V. & Lottering, S. & Liphadzi, S. & Naidoo, D. & , 2022. "Resilience and sustainability of the water sector during the COVID-19 pandemic," Papers published in Journals (Open Access), International Water Management Institute, pages 1-14(3):148.
    4. Naidoo, Dhesigen & Nhamo, Luxon & Mpandeli, Sylvester & Sobratee, Nafisa & Senzanje, Aidan & Liphadzi, Stanley & Slotow, Rob & Jacobson, Michael & Modi, Albert T. & Mabhaudhi, Tafadzwanashe, 2021. "Operationalising the water-energy-food nexus through the theory of change," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Magidi, J. & van Koppen, Barbara & Nhamo, L. & Mpandeli, S. & Slotow, R. & Mabhaudhi, Tafadzwanashe, 2021. "Informing equitable water and food policies through accurate spatial information on irrigated areas in smallholder farming systems," Papers published in Journals (Open Access), International Water Management Institute, pages 1-13(24):36.
    2. Mohammed Sakib Uddin & Khaled Mahmud & Bijoy Mitra & Al-Ekram Elahee Hridoy & Syed Masiur Rahman & Md Shafiullah & Md. Shafiul Alam & Md. Ismail Hossain & Mohammad Sujauddin, 2023. "Coupling Nexus and Circular Economy to Decouple Carbon Emissions from Economic Growth," Sustainability, MDPI, vol. 15(3), pages 1-21, January.
    3. Naidoo, Dhesigen & Nhamo, Luxon & Mpandeli, Sylvester & Sobratee, Nafisa & Senzanje, Aidan & Liphadzi, Stanley & Slotow, Rob & Jacobson, Michael & Modi, Albert T. & Mabhaudhi, Tafadzwanashe, 2021. "Operationalising the water-energy-food nexus through the theory of change," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    4. Luxon Nhamo & Sylvester Mpandeli & Stanley Liphadzi & Tafadzwanashe Mabhaudhi, 2022. "Securing Land and Water for Food Production through Sustainable Land Reform: A Nexus Planning Perspective," Land, MDPI, vol. 11(7), pages 1-15, June.
    5. Mabhaudhi, T. & Nhamo, Luxon & Mpandeli, S. & Nhemachena, Charles & Senzanje, A. & Sobratee, N. & Chivenge, P. P. & Slotow, R. & Naidoo, D. & Liphadzi, S. & Modi, A. T., 2019. "The water–energy–food nexus as a tool to transform rural livelihoods and well-being in southern Africa," Papers published in Journals (Open Access), International Water Management Institute, pages 16(16):1-20.
    6. Joel O. Botai & Christina M. Botai & Katlego P. Ncongwane & Sylvester Mpandeli & Luxon Nhamo & Muthoni Masinde & Abiodun M. Adeola & Michael G. Mengistu & Henerica Tazvinga & Miriam D. Murambadoro & S, 2021. "A Review of the Water–Energy–Food Nexus Research in Africa," Sustainability, MDPI, vol. 13(4), pages 1-26, February.
    7. Rafael Lizarralde & Jaione Ganzarain & Mikel Zubizarreta, 2020. "Assessment and Selection of Technologies for the Sustainable Development of an R&D Center," Sustainability, MDPI, vol. 12(23), pages 1-23, December.
    8. Cinthia Soto Golcher & Ingrid J Visseren-Hamakers, 2018. "Framing and integration in the global forest, agriculture and climate change nexus," Environment and Planning C, , vol. 36(8), pages 1415-1436, December.
    9. Ebun Akinsete & Phoebe Koundouri & Conrad Landis, 2021. "Integrated Approach for Sustainable WEF Nexus Management: An African Case," DEOS Working Papers 2115, Athens University of Economics and Business.
    10. Hamza Gribiss & Mohammad Mohsen Aghelinejad & Farouk Yalaoui, 2023. "Configuration Selection for Renewable Energy Community Using MCDM Methods," Energies, MDPI, vol. 16(6), pages 1-23, March.
    11. Indre Siksnelyte-Butkiene & Dalia Streimikiene & Tomas Balezentis & Virgilijus Skulskis, 2021. "A Systematic Literature Review of Multi-Criteria Decision-Making Methods for Sustainable Selection of Insulation Materials in Buildings," Sustainability, MDPI, vol. 13(2), pages 1-21, January.
    12. Sylvester Mpandeli & Luxon Nhamo & Sithabile Hlahla & Dhesigen Naidoo & Stanley Liphadzi & Albert Thembinkosi Modi & Tafadzwanashe Mabhaudhi, 2020. "Migration under Climate Change in Southern Africa: A Nexus Planning Perspective," Sustainability, MDPI, vol. 12(11), pages 1-14, June.
    13. Ahmad Hamidov & Katharina Helming, 2020. "Sustainability Considerations in Water–Energy–Food Nexus Research in Irrigated Agriculture," Sustainability, MDPI, vol. 12(15), pages 1-20, August.
    14. Zolfaghari, Mehdi & Jariani, Farzaneh, 2020. "Water-Energy-Food Nexus in the Middle East and North African Countries (MENA)," MPRA Paper 104583, University Library of Munich, Germany.
    15. Dhesigen Naidoo & Luxon Nhamo & Shenelle Lottering & Sylvester Mpandeli & Stanley Liphadzi & Albert T. Modi & Cristina Trois & Tafadzwanashe Mabhaudhi, 2021. "Transitional Pathways towards Achieving a Circular Economy in the Water, Energy, and Food Sectors," Sustainability, MDPI, vol. 13(17), pages 1-16, September.
    16. Sree Harsha Bandaru & Victor Becerra & Sourav Khanna & Harold Espargilliere & Law Torres Sevilla & Jovana Radulovic & David Hutchinson & Rinat Khusainov, 2021. "A General Framework for Multi-Criteria Based Feasibility Studies for Solar Energy Projects: Application to a Real-World Solar Farm," Energies, MDPI, vol. 14(8), pages 1-34, April.
    17. Kennedy Muthee & Lalisa Duguma & Judith Nzyoka & Peter Minang, 2021. "Ecosystem-Based Adaptation Practices as a Nature-Based Solution to Promote Water-Energy-Food Nexus Balance," Sustainability, MDPI, vol. 13(3), pages 1-17, January.
    18. Giuseppe Rossi & David J. Peres, 2023. "Climatic and Other Global Changes as Current Challenges in Improving Water Systems Management: Lessons from the Case of Italy," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(6), pages 2387-2402, May.
    19. Dimitra G. Vagiona, 2021. "Comparative Multicriteria Analysis Methods for Ranking Sites for Solar Farm Deployment: A Case Study in Greece," Energies, MDPI, vol. 14(24), pages 1-23, December.
    20. Tena Bilić & Sara Raos & Perica Ilak & Ivan Rajšl & Robert Pašičko, 2020. "Assessment of Geothermal Fields in the South Pannonian Basin System Using a Multi-Criteria Decision-Making Tool," Energies, MDPI, vol. 13(5), pages 1-23, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:20:p:8582-:d:429245. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.