IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i12p6834-d576384.html
   My bibliography  Save this article

Holistic Evaluation of Digital Applications in the Energy Sector—Evaluation Framework Development and Application to the Use Case Smart Meter Roll-Out

Author

Listed:
  • Paul Weigel

    (Wuppertal Institute for Climate, Environment and Energy, Döppersberg 19, 42103 Wuppertal, Germany
    Institute for Environmental Process Engineering and Plant Design, University Duisburg-Essen, Leimkugelstr. 10, 45141 Essen, Germany)

  • Manfred Fischedick

    (Wuppertal Institute for Climate, Environment and Energy, Döppersberg 19, 42103 Wuppertal, Germany)

  • Peter Viebahn

    (Wuppertal Institute for Climate, Environment and Energy, Döppersberg 19, 42103 Wuppertal, Germany)

Abstract

The development of digital technologies is accelerating, enabling increasingly profound changes in increasingly short time periods. The changes affect almost all areas of the economy as well as society. The energy sector has already seen some effects of digitalization, but more drastic changes are expected in the next decades. Besides the very positive impacts on costs, system stability, and environmental effects, potential obstacles and risks need to be addressed to ensure that advantages can be exploited while adverse effects are avoided. A good understanding of available and future digital applications from different stakeholders’ perspectives is necessary. This study proposes a framework for the holistic evaluation of digital applications in the energy sector. The framework consists of a combination of well-established methods, namely the multi-criteria analysis (MCA), the life cycle assessment (LCA), and expert interviews. The objective is to create transparency on benefits, obstacles, and risks as a basis for societal and political discussions and to supply the necessary information for the sustainable development and implementation of digital applications. The novelty of the proposed framework is the specific combination of the three methods and its setup to enable sound applicability to the wide variety of digital applications in the energy sector. The framework is tested subsequently on the example of the German smart meter roll-out. The results reveal that, on the one hand, the smart meter roll-out clearly offers the potential to increase the system stability and decrease the carbon emission intensity of the energy system. Therefore, the overall evaluation from an environmental perspective is positive. However, on the other hand, close attention needs to be paid to the required implementation and operational effort, the IT (information technology) and data security, the added value for the user, the social acceptance, and the realization of energy savings. Therefore, the energy utility perspective in particular results in an overall negative evaluation. Several areas with a need for action are identified. Overall, the proposed framework proves to be suitable for the holistic evaluation of this digital application.

Suggested Citation

  • Paul Weigel & Manfred Fischedick & Peter Viebahn, 2021. "Holistic Evaluation of Digital Applications in the Energy Sector—Evaluation Framework Development and Application to the Use Case Smart Meter Roll-Out," Sustainability, MDPI, vol. 13(12), pages 1-31, June.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:12:p:6834-:d:576384
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/12/6834/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/12/6834/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kumar, Abhishek & Sah, Bikash & Singh, Arvind R. & Deng, Yan & He, Xiangning & Kumar, Praveen & Bansal, R.C., 2017. "A review of multi criteria decision making (MCDM) towards sustainable renewable energy development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 596-609.
    2. Christina Wulf & Jasmin Werker & Christopher Ball & Petra Zapp & Wilhelm Kuckshinrichs, 2019. "Review of Sustainability Assessment Approaches Based on Life Cycles," Sustainability, MDPI, vol. 11(20), pages 1-43, October.
    3. Indre Siksnelyte & Edmundas Kazimieras Zavadskas & Dalia Streimikiene & Deepak Sharma, 2018. "An Overview of Multi-Criteria Decision-Making Methods in Dealing with Sustainable Energy Development Issues," Energies, MDPI, vol. 11(10), pages 1-21, October.
    4. van Est, Rinie, 2019. "Thinking parliamentary technology assessment politically: Exploring the link between democratic policy making and parliamentary TA," Technological Forecasting and Social Change, Elsevier, vol. 139(C), pages 48-56.
    5. Goldbach, Kristin & Rotaru, Andreea Mihaela & Reichert, Stefan & Stiff, George & Gölz, Sebastian, 2018. "Which digital energy services improve energy efficiency? A multi-criteria investigation with European experts," Energy Policy, Elsevier, vol. 115(C), pages 239-248.
    6. Jonathan Calof & Jack E Smith, 2010. "Critical success factors for government-led foresight," Science and Public Policy, Oxford University Press, vol. 37(1), pages 31-40, February.
    7. Sebastian Schär & Jutta Geldermann, 2021. "Adopting Multiactor Multicriteria Analysis for the Evaluation of Energy Scenarios," Sustainability, MDPI, vol. 13(5), pages 1-19, March.
    8. Olga A. Shvetsova & Elena A. Rodionova & Michael Z. Epstein, 2018. "Evaluation of investment projects under uncertainty: multi-criteria approach using interval data," Post-Print hal-01858557, HAL.
    9. Daim, Tugrul U. & Yoon, Byung-Sung & Lindenberg, John & Grizzi, Robert & Estep, Judith & Oliver, Terry, 2018. "Strategic roadmapping of robotics technologies for the power industry: A multicriteria technology assessment," Technological Forecasting and Social Change, Elsevier, vol. 131(C), pages 49-66.
    10. Wang, Jiang-Jiang & Jing, You-Yin & Zhang, Chun-Fa & Zhao, Jun-Hong, 2009. "Review on multi-criteria decision analysis aid in sustainable energy decision-making," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2263-2278, December.
    11. Andrey I. Vlasov & Vadim A. Shakhnov & Sergey S. Filin & Sergey S. Filin & Aleksey I. Krivoshein & Aleksey I. Krivoshein, 2019. "Sustainable energy systems in the digital economy: concept of smart machines," Entrepreneurship and Sustainability Issues, VsI Entrepreneurship and Sustainability Center, vol. 6(4), pages 1975-1986, June.
    12. Turconi, Roberto & Boldrin, Alessio & Astrup, Thomas, 2013. "Life cycle assessment (LCA) of electricity generation technologies: Overview, comparability and limitations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 555-565.
    13. van Dam, S.S. & Bakker, C.A. & Buiter, J.C., 2013. "Do home energy management systems make sense? Assessing their overall lifecycle impact," Energy Policy, Elsevier, vol. 63(C), pages 398-407.
    14. Julia Terrapon-Pfaff & Sibel Raquel Ersoy & Thomas Fink & Sarra Amroune & El Mostafa Jamea & Hsaine Zgou & Peter Viebahn, 2020. "Localizing the Water-Energy Nexus: The Relationship between Solar Thermal Power Plants and Future Developments in Local Water Demand," Sustainability, MDPI, vol. 13(1), pages 1-23, December.
    15. Olga A. Shvetsova & Elena A. Rodionova & Michael Z. Epstein, 2018. "Evaluation of investment projects under uncertainty: multi-criteria approach using interval data," Entrepreneurship and Sustainability Issues, VsI Entrepreneurship and Sustainability Center, vol. 5(4), pages 914-928, June.
    16. Paul J. H. Schoemaker & C. Carter Waid, 1982. "An Experimental Comparison of Different Approaches to Determining Weights in Additive Utility Models," Management Science, INFORMS, vol. 28(2), pages 182-196, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stephany Isabel Vallarta-Serrano & Edgar Santoyo-Castelazo & Edgar Santoyo & Esther O. García-Mandujano & Holkan Vázquez-Sánchez, 2023. "Integrated Sustainability Assessment Framework of Industry 4.0 from an Energy Systems Thinking Perspective: Bibliometric Analysis and Systematic Literature Review," Energies, MDPI, vol. 16(14), pages 1-30, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sellak, Hamza & Ouhbi, Brahim & Frikh, Bouchra & Palomares, Iván, 2017. "Towards next-generation energy planning decision-making: An expert-based framework for intelligent decision support," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1544-1577.
    2. Tobias Witt & Matthias Klumpp, 2021. "Multi-Period Multi-Criteria Decision Making under Uncertainty: A Renewable Energy Transition Case from Germany," Sustainability, MDPI, vol. 13(11), pages 1-20, June.
    3. Sree Harsha Bandaru & Victor Becerra & Sourav Khanna & Harold Espargilliere & Law Torres Sevilla & Jovana Radulovic & David Hutchinson & Rinat Khusainov, 2021. "A General Framework for Multi-Criteria Based Feasibility Studies for Solar Energy Projects: Application to a Real-World Solar Farm," Energies, MDPI, vol. 14(8), pages 1-34, April.
    4. Endre Börcsök & Veronika Groma & Ágnes Gerse & János Osán, 2023. "Determination of Country-Specific Criteria Weights for Long-Term Energy Planning in Europe," Energies, MDPI, vol. 16(13), pages 1-15, June.
    5. Mostafa Shaaban & Jürgen Scheffran & Jürgen Böhner & Mohamed S. Elsobki, 2018. "Sustainability Assessment of Electricity Generation Technologies in Egypt Using Multi-Criteria Decision Analysis," Energies, MDPI, vol. 11(5), pages 1-25, May.
    6. Muhammad Riaz & Wojciech Sałabun & Hafiz Muhammad Athar Farid & Nawazish Ali & Jarosław Wątróbski, 2020. "A Robust q-Rung Orthopair Fuzzy Information Aggregation Using Einstein Operations with Application to Sustainable Energy Planning Decision Management," Energies, MDPI, vol. 13(9), pages 1-39, May.
    7. Yasir Ahmed Solangi & Qingmei Tan & Muhammad Waris Ali Khan & Nayyar Hussain Mirjat & Ifzal Ahmed, 2018. "The Selection of Wind Power Project Location in the Southeastern Corridor of Pakistan: A Factor Analysis, AHP, and Fuzzy-TOPSIS Application," Energies, MDPI, vol. 11(8), pages 1-26, July.
    8. Maarten Wolsink, 2020. "Framing in Renewable Energy Policies: A Glossary," Energies, MDPI, vol. 13(11), pages 1-31, June.
    9. Rafael Lizarralde & Jaione Ganzarain & Mikel Zubizarreta, 2020. "Assessment and Selection of Technologies for the Sustainable Development of an R&D Center," Sustainability, MDPI, vol. 12(23), pages 1-23, December.
    10. Alaa Khadra & Mårten Hugosson & Jan Akander & Jonn Are Myhren, 2020. "Development of a Weight Factor Method for Sustainability Decisions in Building Renovation. Case Study Using Renobuild," Sustainability, MDPI, vol. 12(17), pages 1-15, September.
    11. Osseweijer, Floor J.W. & van den Hurk, Linda B.P. & Teunissen, Erik J.H.M. & van Sark, Wilfried G.J.H.M., 2018. "A comparative review of building integrated photovoltaics ecosystems in selected European countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 1027-1040.
    12. Olga Shestak & Oleg L. Shcheka & Yury Klochkov, 2020. "Methodological aspects of use of countries experience in determining the directions of the strategic development of the Russian Federation arctic regions," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 11(1), pages 44-62, May.
    13. Ifaei, Pouya & Tayerani Charmchi, Amir Saman & Loy-Benitez, Jorge & Yang, Rebecca Jing & Yoo, ChangKyoo, 2022. "A data-driven analytical roadmap to a sustainable 2030 in South Korea based on optimal renewable microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    14. Fang, Hong & Wang, Xu & Song, Wenyan, 2020. "Technology selection for photovoltaic cell from sustainability perspective: An integrated approach," Renewable Energy, Elsevier, vol. 153(C), pages 1029-1041.
    15. José Carlos Romero & Pedro Linares, 2021. "Multiple Criteria Decision-Making as an Operational Conceptualization of Energy Sustainability," Sustainability, MDPI, vol. 13(21), pages 1-14, October.
    16. Ali Mostafaeipour & Seyyed Jalaladdin Hosseini Dehshiri & Seyyed Shahabaddin Hosseini Dehshiri & Mehdi Jahangiri & Kuaanan Techato, 2020. "A Thorough Analysis of Potential Geothermal Project Locations in Afghanistan," Sustainability, MDPI, vol. 12(20), pages 1-17, October.
    17. Syed Ali Abbas Kazmi & Muhammad Khuram Shahzad & Akif Zia Khan & Dong Ryeol Shin, 2017. "Smart Distribution Networks: A Review of Modern Distribution Concepts from a Planning Perspective," Energies, MDPI, vol. 10(4), pages 1-47, April.
    18. Rekha Guchhait & Biswajit Sarkar, 2023. "Increasing Growth of Renewable Energy: A State of Art," Energies, MDPI, vol. 16(6), pages 1-29, March.
    19. Oner, Oytun & Khalilpour, Kaveh, 2022. "Evaluation of green hydrogen carriers: A multi-criteria decision analysis tool," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    20. Magdalena Krysiak & Aldona Kluczek, 2021. "A Multifaceted Challenge to Enhance Multicriteria Decision Support for Energy Policy," Energies, MDPI, vol. 14(14), pages 1-20, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:12:p:6834-:d:576384. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.