IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i20p8531-d428631.html
   My bibliography  Save this article

Assessment of Soil Erosion Using the RUSLE Model for the Epworth District of the Harare Metropolitan Province, Zimbabwe

Author

Listed:
  • Andrew K. Marondedze

    (Physical Geography, Institute of Geographical Sciences, Freie Universität Berlin, Malteserstraße 74–100, 12449 Berlin, Germany)

  • Brigitta Schütt

    (Physical Geography, Institute of Geographical Sciences, Freie Universität Berlin, Malteserstraße 74–100, 12449 Berlin, Germany)

Abstract

Urban development without adequate soil erosion control measures is becoming a major environmental concern in developing urban areas across Africa. These environmental disturbances encompass rampart Land Use and Land Cover changes (LULC) due to a high population growth rate and increased economic activities. To understand the influence of accelerated LULC changes and urban expansion as major drivers in landscape degradation in the Epworth district of the Harare Metropolitan Province, the RUSLE model was employed. This considers land use, soil, climate and topography as input parameters in the assessment of the extent and impact of these drivers on soil erosion. The Revised Universal Soil Loss Equation (RUSLE) was used to predict the potential erosion between 1984 and 2018 and soil erosion risk for the years 2000 and 2018. The mean rate of the predicted potential soil erosion was 13.2 t ha −1 yr −1 (1984–2018); areas especially vulnerable to erosion were predicted for foot slope areas with direct tributaries to the major streams and steep sloping zones. The average soil erosion risk was estimated at 1.31 t ha −1 yr −1 for the year 2000 and 1.12 t ha −1 yr −1 for 2018. While the overall potential soil loss decreased between 2000 and 2018, the potential soil loss was observed to increase tremendously in residential areas, which doubled in extent between 2000 and 2018. The findings reveal that about 40% of the Epworth district was threatened by unsustainable soil loss resulting from increased soil erosion risk within the built-up areas.

Suggested Citation

  • Andrew K. Marondedze & Brigitta Schütt, 2020. "Assessment of Soil Erosion Using the RUSLE Model for the Epworth District of the Harare Metropolitan Province, Zimbabwe," Sustainability, MDPI, vol. 12(20), pages 1-24, October.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:20:p:8531-:d:428631
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/20/8531/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/20/8531/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lufafa, A. & Tenywa, M. M. & Isabirye, M. & Majaliwa, M. J. G. & Woomer, P. L., 2003. "Prediction of soil erosion in a Lake Victoria basin catchment using a GIS-based Universal Soil Loss model," Agricultural Systems, Elsevier, vol. 76(3), pages 883-894, June.
    2. Rahman, Md. Rejaur & Shi, Z.H. & Chongfa, Cai, 2009. "Soil erosion hazard evaluation—An integrated use of remote sensing, GIS and statistical approaches with biophysical parameters towards management strategies," Ecological Modelling, Elsevier, vol. 220(13), pages 1724-1734.
    3. Tomislav Hengl & Jorge Mendes de Jesus & Gerard B M Heuvelink & Maria Ruiperez Gonzalez & Milan Kilibarda & Aleksandar Blagotić & Wei Shangguan & Marvin N Wright & Xiaoyuan Geng & Bernhard Bauer-Marsc, 2017. "SoilGrids250m: Global gridded soil information based on machine learning," PLOS ONE, Public Library of Science, vol. 12(2), pages 1-40, February.
    4. Gezahegn Weldu Woldemariam & Anteneh Derribew Iguala & Solomon Tekalign & Ramireddy Uttama Reddy, 2018. "Spatial Modeling of Soil Erosion Risk and Its Implication for Conservation Planning: the Case of the Gobele Watershed, East Hararghe Zone, Ethiopia," Land, MDPI, vol. 7(1), pages 1-25, February.
    5. Andrew K. Marondedze & Brigitta Schütt, 2019. "Dynamics of Land Use and Land Cover Changes in Harare, Zimbabwe: A Case Study on the Linkage between Drivers and the Axis of Urban Expansion," Land, MDPI, vol. 8(10), pages 1-20, October.
    6. Gergely Jakab & Balázs Madarász & Judit Alexandra Szabó & Adrienn Tóth & Dóra Zacháry & Zoltán Szalai & Ádám Kertész & Jeremy Dyson, 2017. "Infiltration and Soil Loss Changes during the Growing Season under Ploughing and Conservation Tillage," Sustainability, MDPI, vol. 9(10), pages 1-13, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dawit Samuel Teshome & Mitiku Badasa Moisa & Dessalegn Obsi Gemeda & Songcai You, 2022. "Effect of Land Use-Land Cover Change on Soil Erosion and Sediment Yield in Muger Sub-Basin, Upper Blue Nile Basin, Ethiopia," Land, MDPI, vol. 11(12), pages 1-20, November.
    2. Taingaun Sourn & Sophak Pok & Phanith Chou & Nareth Nut & Dyna Theng & P. V. Vara Prasad, 2022. "Assessment of Land Use and Land Cover Changes on Soil Erosion Using Remote Sensing, GIS and RUSLE Model: A Case Study of Battambang Province, Cambodia," Sustainability, MDPI, vol. 14(7), pages 1-24, March.
    3. Hadi Eskandari Damaneh & Hassan Khosravi & Khalil Habashi & Hamed Eskandari Damaneh & John P. Tiefenbacher, 2022. "The impact of land use and land cover changes on soil erosion in western Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(3), pages 2185-2205, February.
    4. Nareth Nut & Machito Mihara & Jaehak Jeong & Bunthan Ngo & Gilbert Sigua & P.V. Vara Prasad & Manny R. Reyes, 2021. "Land Use and Land Cover Changes and Its Impact on Soil Erosion in Stung Sangkae Catchment of Cambodia," Sustainability, MDPI, vol. 13(16), pages 1-25, August.
    5. Kamal Elbadaoui & Soukaina Mansour & Mustapha Ikirri & Kamal Abdelrahman & Tamer Abu-Alam & Mohamed Abioui, 2023. "Integrating Erosion Potential Model (EPM) and PAP/RAC Guidelines for Water Erosion Mapping and Detection of Vulnerable Areas in the Toudgha River Watershed of the Central High Atlas, Morocco," Land, MDPI, vol. 12(4), pages 1-24, April.
    6. Chathura Palliyaguru & Vindhya Basnayake & Randika K. Makumbura & Miyuru B. Gunathilake & Nitin Muttil & Eranga M. Wimalasiri & Upaka Rathnayake, 2022. "Evaluation of the Impact of Land Use Changes on Soil Erosion in the Tropical Maha Oya River Basin, Sri Lanka," Land, MDPI, vol. 12(1), pages 1-33, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hadi Eskandari Damaneh & Hassan Khosravi & Khalil Habashi & Hamed Eskandari Damaneh & John P. Tiefenbacher, 2022. "The impact of land use and land cover changes on soil erosion in western Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(3), pages 2185-2205, February.
    2. Alelgn Ewunetu & Belay Simane & Ermias Teferi & Benjamin F. Zaitchik, 2021. "Mapping and Quantifying Comprehensive Land Degradation Status Using Spatial Multicriteria Evaluation Technique in the Headwaters Area of Upper Blue Nile River," Sustainability, MDPI, vol. 13(4), pages 1-27, February.
    3. Gezahegn Weldu Woldemariam & Arus Edo Harka, 2020. "Effect of Land Use and Land Cover Change on Soil Erosion in Erer Sub-Basin, Northeast Wabi Shebelle Basin, Ethiopia," Land, MDPI, vol. 9(4), pages 1-25, April.
    4. Telmo José Mendes & Diego Silva Siqueira & Eduardo Barretto Figueiredo & Ricardo de Oliveira Bordonal & Mara Regina Moitinho & José Marques Júnior & Newton La Scala Jr., 2021. "Soil carbon stock estimations: methods and a case study of the Maranhão State, Brazil," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(11), pages 16410-16427, November.
    5. Jinzhu Jiu & Hongjuan Wu & Sen Li, 2019. "The Implication of Land-Use/Land-Cover Change for the Declining Soil Erosion Risk in the Three Gorges Reservoir Region, China," IJERPH, MDPI, vol. 16(10), pages 1-16, May.
    6. Chuhong Shen & Kangning Xiong & Tian Shu, 2022. "Dynamic Evolution and Quantitative Attribution of Soil Erosion Based on Slope Units: A Case Study of a Karst Plateau-Gorge Area in SW China," Land, MDPI, vol. 11(8), pages 1-18, July.
    7. Joachim Eisenberg & Fabrice A. Muvundja, 2020. "Quantification of Erosion in Selected Catchment Areas of the Ruzizi River (DRC) Using the (R)USLE Model," Land, MDPI, vol. 9(4), pages 1-18, April.
    8. Guoqiang Qiu & Yinghong Wang & Shanshan Guo & Qian Niu & Lin Qin & Di Zhu & Yunlong Gong, 2022. "Assessment and Spatial-Temporal Evolution Analysis of Land Use Conflict within Urban Spatial Zoning: Case of the Su-Xi-Chang Region," Sustainability, MDPI, vol. 14(4), pages 1-18, February.
    9. Peter Bossew & Giorgia Cinelli & Giancarlo Ciotoli & Quentin G. Crowley & Marc De Cort & Javier Elío Medina & Valeria Gruber & Eric Petermann & Tore Tollefsen, 2020. "Development of a Geogenic Radon Hazard Index—Concept, History, Experiences," IJERPH, MDPI, vol. 17(11), pages 1-23, June.
    10. Ravic Nijbroek & Kristin Piikki & Mats Söderström & Bas Kempen & Katrine G. Turner & Simeon Hengari & John Mutua, 2018. "Soil Organic Carbon Baselines for Land Degradation Neutrality: Map Accuracy and Cost Tradeoffs with Respect to Complexity in Otjozondjupa, Namibia," Sustainability, MDPI, vol. 10(5), pages 1-20, May.
    11. Juan Antonio Villarreal Sanchez & Lourdes Diaz Jimenez & Jose Concepcion Escobedo Bocardo & Jose Omar Cardenas Palomo & Nereida Elizabeth Guerra Escamilla & Jesus Salvador Luna Alvarez, 2018. "Effect of Marine Microorganisms on Limestone as an Approach for Calcareous Soil," Sustainability, MDPI, vol. 10(6), pages 1-11, June.
    12. Jasmin Ismail & S. Ravichandran, 2008. "RUSLE2 Model Application for Soil Erosion Assessment Using Remote Sensing and GIS," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(1), pages 83-102, January.
    13. Shifa Chen & Xuan Zha, 2016. "Evaluation of soil erosion vulnerability in the Zhuxi watershed, Fujian Province, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(3), pages 1589-1607, July.
    14. Simonit, Silvio & Perrings, Charles, 2011. "Sustainability and the value of the 'regulating' services: Wetlands and water quality in Lake Victoria," Ecological Economics, Elsevier, vol. 70(6), pages 1189-1199, April.
    15. Fritz, Steffen & See, Linda & Bayas, Juan Carlos Laso & Waldner, François & Jacques, Damien & Becker-Reshef, Inbal & Whitcraft, Alyssa & Baruth, Bettina & Bonifacio, Rogerio & Crutchfield, Jim & Rembo, 2019. "A comparison of global agricultural monitoring systems and current gaps," Agricultural Systems, Elsevier, vol. 168(C), pages 258-272.
    16. Pender, John L. & Nkonya, Ephraim M. & Kato, Edward & Kaizzi, Crammer & Ssali, Henry, 2009. "Impacts of Cash Crop Production on Land Management and Land Degradation: The Case of Coffee and Cotton in Uganda," 2009 Conference, August 16-22, 2009, Beijing, China 50760, International Association of Agricultural Economists.
    17. Amirhossein Hassani & Adisa Azapagic & Nima Shokri, 2021. "Global predictions of primary soil salinization under changing climate in the 21st century," Nature Communications, Nature, vol. 12(1), pages 1-17, December.
    18. Nugun P. Jellason & Elizabeth J. Z. Robinson & Abbie S. A. Chapman & Dora Neina & Adam J. M. Devenish & June Y. T. Po & Barbara Adolph, 2021. "A Systematic Review of Drivers and Constraints on Agricultural Expansion in Sub-Saharan Africa," Land, MDPI, vol. 10(3), pages 1-17, March.
    19. Susanta Das & Proloy Deb & Pradip Kumar Bora & Prafull Katre, 2020. "Comparison of RUSLE and MMF Soil Loss Models and Evaluation of Catchment Scale Best Management Practices for a Mountainous Watershed in India," Sustainability, MDPI, vol. 13(1), pages 1-22, December.
    20. Yu Feng & Zhenzhong Zeng & Timothy D. Searchinger & Alan D. Ziegler & Jie Wu & Dashan Wang & Xinyue He & Paul R. Elsen & Philippe Ciais & Rongrong Xu & Zhilin Guo & Liqing Peng & Yiheng Tao & Dominick, 2022. "Doubling of annual forest carbon loss over the tropics during the early twenty-first century," Nature Sustainability, Nature, vol. 5(5), pages 444-451, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:20:p:8531-:d:428631. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.