IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v9y2020i4p111-d341751.html
   My bibliography  Save this article

Effect of Land Use and Land Cover Change on Soil Erosion in Erer Sub-Basin, Northeast Wabi Shebelle Basin, Ethiopia

Author

Listed:
  • Gezahegn Weldu Woldemariam

    (Geoinformation Science Program, School of Geography and Environmental Studies, Haramaya University, P.O. Box 138, 3220 Dire Dawa, Ethiopia)

  • Arus Edo Harka

    (Hydraulic and Water Resources Engineering Department, School of Water Resources and Environmental Engineering, Haramaya Institute of Technology (HiT), Haramaya University, P.O. Box 138, 3220 Dire Dawa, Ethiopia)

Abstract

Land use and land cover change (LULCC) is a critical factor for enhancing the soil erosion risk and land degradation process in the Wabi Shebelle Basin. Up-to-date spatial and statistical data on basin-wide erosion rates can provide an important basis for planning and conservation of soil and water ecosystems. The objectives of this study were to examine the magnitude of LULCC and consequent changes in the spatial extent of soil erosion risk, and identify priority areas for Soil and Water Conservation (SWC) in the Erer Sub-Basin, Wabi Shebelle Basin, Ethiopia. The soil loss rates were estimated using an empirical prediction model of the Revised Universal Soil Loss Equation (RUSLE) outlined in the ArcGIS environment. The estimated total annual actual soil loss at the sub-basin level was 1.01 million tons in 2000 and 1.52 million tons in 2018 with a mean erosion rate of 75.85 t ha −1 y −1 and 107.07 t ha −1 y −1 , respectively. The most extensive soil loss rates were estimated in croplands and bare land cover, with a mean soil loss rate of 37.60 t ha −1 y −1 and 15.78 t ha −1 y −1 , respectively. The soil erosion risk has increased by 18.28% of the total area, and decreased by 15.93%, showing that the overall soil erosion situation is worsening in the study area. We determined SWC priority areas using a Multi Criteria Decision Rule (MCDR) approach, indicating that the top three levels identified for intense SWC account for about 2.50%, 2.38%, and 2.14%, respectively. These priority levels are typically situated along the steep slopes in Babile, Fedis, Fik, Gursum, Gola Oda, Haramaya, Jarso, and Kombolcha districts that need emergency SWC measures.

Suggested Citation

  • Gezahegn Weldu Woldemariam & Arus Edo Harka, 2020. "Effect of Land Use and Land Cover Change on Soil Erosion in Erer Sub-Basin, Northeast Wabi Shebelle Basin, Ethiopia," Land, MDPI, vol. 9(4), pages 1-25, April.
  • Handle: RePEc:gam:jlands:v:9:y:2020:i:4:p:111-:d:341751
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/9/4/111/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/9/4/111/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rahman, Md. Rejaur & Shi, Z.H. & Chongfa, Cai, 2009. "Soil erosion hazard evaluation—An integrated use of remote sensing, GIS and statistical approaches with biophysical parameters towards management strategies," Ecological Modelling, Elsevier, vol. 220(13), pages 1724-1734.
    2. Fidele Karamage & Chi Zhang & Felix Ndayisaba & Hua Shao & Alphonse Kayiranga & Xia Fang & Lamek Nahayo & Enan Muhire Nyesheja & Guangjin Tian, 2016. "Extent of Cropland and Related Soil Erosion Risk in Rwanda," Sustainability, MDPI, vol. 8(7), pages 1-19, June.
    3. Gezahegn Weldu Woldemariam & Anteneh Derribew Iguala & Solomon Tekalign & Ramireddy Uttama Reddy, 2018. "Spatial Modeling of Soil Erosion Risk and Its Implication for Conservation Planning: the Case of the Gobele Watershed, East Hararghe Zone, Ethiopia," Land, MDPI, vol. 7(1), pages 1-25, February.
    4. Xiaoliang Han & Peiyi Lv & Sen Zhao & Yan Sun & Shiyu Yan & Minghao Wang & Xiaona Han & Xiuru Wang, 2018. "The Effect of the Gully Land Consolidation Project on Soil Erosion and Crop Production on a Typical Watershed in the Loess Plateau," Land, MDPI, vol. 7(4), pages 1-19, September.
    5. Sisay Nune Hailemariam & Teshome Soromessa & Demel Teketay, 2016. "Land Use and Land Cover Change in the Bale Mountain Eco-Region of Ethiopia during 1985 to 2015," Land, MDPI, vol. 5(4), pages 1-22, November.
    6. Shimelis Setegn & V. Chowdary & B. Mal & Fikadu Yohannes & Yasuyuki Kono, 2011. "Water Balance Study and Irrigation Strategies for Sustainable Management of a Tropical Ethiopian Lake: A Case Study of Lake Alemaya," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(9), pages 2081-2107, July.
    7. Kabir Uddin & Mir Abdul Matin & Sajana Maharjan, 2018. "Assessment of Land Cover Change and Its Impact on Changes in Soil Erosion Risk in Nepal," Sustainability, MDPI, vol. 10(12), pages 1-20, December.
    8. John Boardman, 2013. "Soil Erosion in Britain: Updating the Record," Agriculture, MDPI, vol. 3(3), pages 1-25, August.
    9. Adugnaw T. Akale & Dessalegn C. Dagnew & Mulugeta A. Belete & Seifu A. Tilahun & Wolde Mekuria & Tammo S. Steenhuis, 2017. "Impact of Soil Depth and Topography on the Effectiveness of Conservation Practices on Discharge and Soil Loss in the Ethiopian Highlands," Land, MDPI, vol. 6(4), pages 1-17, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dawit Samuel Teshome & Mitiku Badasa Moisa & Dessalegn Obsi Gemeda & Songcai You, 2022. "Effect of Land Use-Land Cover Change on Soil Erosion and Sediment Yield in Muger Sub-Basin, Upper Blue Nile Basin, Ethiopia," Land, MDPI, vol. 11(12), pages 1-20, November.
    2. George Watene & Lijun Yu & Yueping Nie & Jianfeng Zhu & Thomas Ngigi & Jean de Dieu Nambajimana & Benson Kenduiywo, 2021. "Water Erosion Risk Assessment in the Kenya Great Rift Valley Region," Sustainability, MDPI, vol. 13(2), pages 1-31, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dawit Samuel Teshome & Mitiku Badasa Moisa & Dessalegn Obsi Gemeda & Songcai You, 2022. "Effect of Land Use-Land Cover Change on Soil Erosion and Sediment Yield in Muger Sub-Basin, Upper Blue Nile Basin, Ethiopia," Land, MDPI, vol. 11(12), pages 1-20, November.
    2. Gezahegn Weldu Woldemariam & Anteneh Derribew Iguala & Solomon Tekalign & Ramireddy Uttama Reddy, 2018. "Spatial Modeling of Soil Erosion Risk and Its Implication for Conservation Planning: the Case of the Gobele Watershed, East Hararghe Zone, Ethiopia," Land, MDPI, vol. 7(1), pages 1-25, February.
    3. Andrew K. Marondedze & Brigitta Schütt, 2020. "Assessment of Soil Erosion Using the RUSLE Model for the Epworth District of the Harare Metropolitan Province, Zimbabwe," Sustainability, MDPI, vol. 12(20), pages 1-24, October.
    4. Chathura Palliyaguru & Vindhya Basnayake & Randika K. Makumbura & Miyuru B. Gunathilake & Nitin Muttil & Eranga M. Wimalasiri & Upaka Rathnayake, 2022. "Evaluation of the Impact of Land Use Changes on Soil Erosion in the Tropical Maha Oya River Basin, Sri Lanka," Land, MDPI, vol. 12(1), pages 1-33, December.
    5. Abazar Esmali Ouri & Mohammad Golshan & Saeid Janizadeh & Artemi Cerdà & Assefa M. Melesse, 2020. "Soil Erosion Susceptibility Mapping in Kozetopraghi Catchment, Iran: A Mixed Approach Using Rainfall Simulator and Data Mining Techniques," Land, MDPI, vol. 9(10), pages 1-18, October.
    6. Albert Poponi Maniraho & Richard Mind’je & Wenjiang Liu & Vincent Nzabarinda & Patient Mindje Kayumba & Lamek Nahayo & Adeline Umugwaneza & Solange Uwamahoro & Lanhai Li, 2021. "Application of the Adapted Approach for Crop Management Factor to Assess Soil Erosion Risk in an Agricultural Area of Rwanda," Land, MDPI, vol. 10(10), pages 1-24, October.
    7. Bin Huang & Zaijian Yuan & Mingguo Zheng & Yishan Liao & Kim Loi Nguyen & Thi Hong Nguyen & Samran Sombatpanit & Dingqiang Li, 2022. "Soil and Water Conservation Techniques in Tropical and Subtropical Asia: A Review," Sustainability, MDPI, vol. 14(9), pages 1-19, April.
    8. Mohd Amirul Mahamud & Noor Aida Saad & Roslan Zainal Abidin & Mohd Fazly Yusof & Nor Azazi Zakaria & Mohd Aminur Rashid Mohd Amiruddin Arumugam & Safari Mat Desa & Md. Nasir Md. Noh, 2021. "Determination of Cover and Land Management Factors for Soil Loss Prediction in Cameron Highlands, Malaysia," Agriculture, MDPI, vol. 12(1), pages 1-11, December.
    9. Chuhong Shen & Kangning Xiong & Tian Shu, 2022. "Dynamic Evolution and Quantitative Attribution of Soil Erosion Based on Slope Units: A Case Study of a Karst Plateau-Gorge Area in SW China," Land, MDPI, vol. 11(8), pages 1-18, July.
    10. Shifa Chen & Xuan Zha, 2016. "Evaluation of soil erosion vulnerability in the Zhuxi watershed, Fujian Province, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(3), pages 1589-1607, July.
    11. Prakash Singh Thapa & Basanta Raj Adhikari & Rajib Shaw & Diwakar Bhattarai & Seiji Yanai, 2023. "Geomorphological analysis and early warning systems for landslide risk mitigation in Nepalese mid-hills," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(2), pages 1793-1812, June.
    12. Weilun Feng & Yurui Li, 2021. "Measuring the Ecological Safety Effects of Land Use Transitions Promoted by Land Consolidation Projects: The Case of Yan’an City on the Loess Plateau of China," Land, MDPI, vol. 10(8), pages 1-15, July.
    13. Jamroon Srichaichana & Yongyut Trisurat & Suwit Ongsomwang, 2019. "Land Use and Land Cover Scenarios for Optimum Water Yield and Sediment Retention Ecosystem Services in Klong U-Tapao Watershed, Songkhla, Thailand," Sustainability, MDPI, vol. 11(10), pages 1-22, May.
    14. Belay Manjur Gebru & Woo-Kyun Lee & Asia Khamzina & Sonam Wangyel Wang & Sungeun Cha & Cholho Song & Munkhansan Lamchin, 2021. "Spatiotemporal multi-index analysis of desertification in dry Afromontane forests of northern Ethiopia," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(1), pages 423-450, January.
    15. Nikafkar, Nasrin & Alroaia, Younos Vakil & Heydariyeh, Seyyed Abdollah & Schleiss, Anton J., 2023. "Economic and commercial analysis of reusing dam reservoir sediments," Ecological Economics, Elsevier, vol. 204(PB).
    16. Nugun P. Jellason & Elizabeth J. Z. Robinson & Abbie S. A. Chapman & Dora Neina & Adam J. M. Devenish & June Y. T. Po & Barbara Adolph, 2021. "A Systematic Review of Drivers and Constraints on Agricultural Expansion in Sub-Saharan Africa," Land, MDPI, vol. 10(3), pages 1-17, March.
    17. Susanta Das & Proloy Deb & Pradip Kumar Bora & Prafull Katre, 2020. "Comparison of RUSLE and MMF Soil Loss Models and Evaluation of Catchment Scale Best Management Practices for a Mountainous Watershed in India," Sustainability, MDPI, vol. 13(1), pages 1-22, December.
    18. Shuchang Li & Wei Song, 2023. "Research Progress in Land Consolidation and Rural Revitalization: Current Status, Characteristics, Regional Differences, and Evolution Laws," Land, MDPI, vol. 12(1), pages 1-24, January.
    19. Mengyao Li & Yong Zhou & Pengnan Xiao & Yang Tian & He Huang & Liang Xiao, 2021. "Evolution of Habitat Quality and Its Topographic Gradient Effect in Northwest Hubei Province from 2000 to 2020 Based on the InVEST Model," Land, MDPI, vol. 10(8), pages 1-25, August.
    20. Cláudia M. Viana & Jorge Rocha, 2020. "Evaluating Dominant Land Use/Land Cover Changes and Predicting Future Scenario in a Rural Region Using a Memoryless Stochastic Method," Sustainability, MDPI, vol. 12(10), pages 1-28, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:9:y:2020:i:4:p:111-:d:341751. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.