IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i4p2244-d502056.html
   My bibliography  Save this article

Mapping and Quantifying Comprehensive Land Degradation Status Using Spatial Multicriteria Evaluation Technique in the Headwaters Area of Upper Blue Nile River

Author

Listed:
  • Alelgn Ewunetu

    (Department of Geography and Environmental Studies, Woldia University, 400 Woldia, Ethiopia
    Center for Environment and Development Studies, Addis Ababa University, 1176 Addis Ababa, Ethiopia)

  • Belay Simane

    (Center for Environment and Development Studies, Addis Ababa University, 1176 Addis Ababa, Ethiopia)

  • Ermias Teferi

    (Center for Environment and Development Studies, Addis Ababa University, 1176 Addis Ababa, Ethiopia
    Water and Land Resource Center, Addis Ababa University, 1176 Addis Ababa, Ethiopia)

  • Benjamin F. Zaitchik

    (Department of Earth and Planetary Sciences, Johns Hopkins University, Baltimore, MD 21218, USA)

Abstract

Mapping and quantifying land degradation status is important for identifying vulnerable areas and to design sustainable landscape management. This study maps and quantifies land degradation status in the north Gojjam sub-basin of the Upper Blue Nile River (Abbay) using GIS and remote sensing integrated with multicriteria analysis (MCA). This is accomplished using a combination of biological, physical, and chemical land degradation indicators to generate a comprehensive land degradation assessment. All indicators were standardized and weighted using analytical hierarchy and pairwise comparison techniques. About 45.3% of the sub-basin was found to experience high to very high soil loss risk, with an average soil loss of 46 t ha −1 yr −1 . More than half of the sub-basin was found to experience moderate to high level of biological degradation (low vegetation status and low soil organic matter level). In total, 80.2% of the area is characterized as having a moderate level of physical land degradation. Similarly, the status of chemical degradation for about 55.8% and 39% of the sub-basin was grouped as low and moderate, respectively. The combined spatial MCA of biological, chemical, and physical land degradation indicators showed that about 1.14%, 32%, 35.4%, and 30.5% of the sub-basin exhibited very low, low, moderate, and high degradation level, respectively. This study has concluded that soil erosion and high level of biological degradation are the most important indicators of land degradation in the north Gojjam sub-basin. Hence, the study suggests the need for integrated land management practices to reduce land degradation, enhance the soil organic matter content, and increase the vegetation cover in the sub-basin.

Suggested Citation

  • Alelgn Ewunetu & Belay Simane & Ermias Teferi & Benjamin F. Zaitchik, 2021. "Mapping and Quantifying Comprehensive Land Degradation Status Using Spatial Multicriteria Evaluation Technique in the Headwaters Area of Upper Blue Nile River," Sustainability, MDPI, vol. 13(4), pages 1-27, February.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:4:p:2244-:d:502056
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/4/2244/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/4/2244/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Belay Simane & Benjamin Zaitchik & Jeremy Foltz, 2016. "Agroecosystem specific climate vulnerability analysis: application of the livelihood vulnerability index to a tropical highland region," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 21(1), pages 39-65, January.
    2. Hajkowicz, Stefan & Higgins, Andrew, 2008. "A comparison of multiple criteria analysis techniques for water resource management," European Journal of Operational Research, Elsevier, vol. 184(1), pages 255-265, January.
    3. Rahman, Md. Rejaur & Shi, Z.H. & Chongfa, Cai, 2009. "Soil erosion hazard evaluation—An integrated use of remote sensing, GIS and statistical approaches with biophysical parameters towards management strategies," Ecological Modelling, Elsevier, vol. 220(13), pages 1724-1734.
    4. Elkhan Richard Sadik-Zada, 2020. "Distributional Bargaining and the Speed of Structural Change in the Petroleum Exporting Labor Surplus Economies," The European Journal of Development Research, Palgrave Macmillan;European Association of Development Research and Training Institutes (EADI), vol. 32(1), pages 51-98, January.
    5. Tomislav Hengl & Jorge Mendes de Jesus & Gerard B M Heuvelink & Maria Ruiperez Gonzalez & Milan Kilibarda & Aleksandar Blagotić & Wei Shangguan & Marvin N Wright & Xiaoyuan Geng & Bernhard Bauer-Marsc, 2017. "SoilGrids250m: Global gridded soil information based on machine learning," PLOS ONE, Public Library of Science, vol. 12(2), pages 1-40, February.
    6. Belay Simane & Benjamin F. Zaitchik & Mutlu Ozdogan, 2013. "Agroecosystem Analysis of the Choke Mountain Watersheds, Ethiopia," Sustainability, MDPI, vol. 5(2), pages 1-25, February.
    7. von Braun, Joachim & Gerber, Nicolas & Mirzabaev, Alisher & Nkonya, Ephraim M., 2013. "The Economics of Land Degradation," Working Papers 147910, University of Bonn, Center for Development Research (ZEF).
    8. Nkonya, Ephraim & von Braun, Joachim & Mirzabaev, Alisher & Le, Quang Bao & Kwon, Ho Young & Kirui, Oliver K., 2013. "Economics of Land Degradation Initiative: Methods and Approach for Global and National Assessments," Discussion Papers 158663, University of Bonn, Center for Development Research (ZEF).
    9. Alelgn Ewunetu & Belay Simane & Ermias Teferi & Benjamin F. Zaitchik, 2021. "Land Cover Change in the Blue Nile River Headwaters: Farmers’ Perceptions, Pressures, and Satellite-Based Mapping," Land, MDPI, vol. 10(1), pages 1-25, January.
    10. Ananda, Jayanath & Herath, Gamini, 2009. "A critical review of multi-criteria decision making methods with special reference to forest management and planning," Ecological Economics, Elsevier, vol. 68(10), pages 2535-2548, August.
    11. Yilma, Aster Denekew & Awulachew, Seleshi Bekele, 2009. "Characterization and atlas of the Blue Nile Basin and its sub basins," Conference Papers h042502, International Water Management Institute.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alelgn Ewunetu & Belay Simane & Ermias Teferi & Benjamin F. Zaitchik, 2021. "Relationships and the Determinants of Sustainable Land Management Technologies in North Gojjam Sub-Basin, Upper Blue Nile, Ethiopia," Sustainability, MDPI, vol. 13(11), pages 1-19, June.
    2. Vito Imbrenda & Rosa Coluzzi & Valerio Di Stefano & Gianluca Egidi & Luca Salvati & Caterina Samela & Tiziana Simoniello & Maria Lanfredi, 2022. "Modeling Spatio-Temporal Divergence in Land Vulnerability to Desertification with Local Regressions," Sustainability, MDPI, vol. 14(17), pages 1-20, August.
    3. Kamal Elbadaoui & Soukaina Mansour & Mustapha Ikirri & Kamal Abdelrahman & Tamer Abu-Alam & Mohamed Abioui, 2023. "Integrating Erosion Potential Model (EPM) and PAP/RAC Guidelines for Water Erosion Mapping and Detection of Vulnerable Areas in the Toudgha River Watershed of the Central High Atlas, Morocco," Land, MDPI, vol. 12(4), pages 1-24, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alelgn Ewunetu & Belay Simane & Ermias Teferi & Benjamin F. Zaitchik, 2021. "Relationships and the Determinants of Sustainable Land Management Technologies in North Gojjam Sub-Basin, Upper Blue Nile, Ethiopia," Sustainability, MDPI, vol. 13(11), pages 1-19, June.
    2. Workie, Lamesgin Tebeje, 2017. "Households’ Willingness To Pay For Soil Conservation Practices On Cultivated Land In South Achefer District, Amhara National Regional State Of Ethiopia: A Contingent Valuation Approach," Research Theses 276459, Collaborative Masters Program in Agricultural and Applied Economics.
    3. Alelgn Ewunetu & Belay Simane & Ermias Teferi & Benjamin F. Zaitchik, 2021. "Land Cover Change in the Blue Nile River Headwaters: Farmers’ Perceptions, Pressures, and Satellite-Based Mapping," Land, MDPI, vol. 10(1), pages 1-25, January.
    4. Le, Quang Bao & Nkonya, Ephraim & Mirzabaev, Alisher, 2014. "Biomass Productivity-Based Mapping of Global Land Degradation Hotspots," Discussion Papers 177961, University of Bonn, Center for Development Research (ZEF).
    5. Anton Strokov & Ekatherine Yakubovich & Pavel Krasilnikov, 2017. "Economic and Ecological Evaluation of Land Use Change: Evidence from Karelia," Economy of region, Centre for Economic Security, Institute of Economics of Ural Branch of Russian Academy of Sciences, vol. 1(2), pages 422-433.
    6. Hadi Eskandari Damaneh & Hassan Khosravi & Khalil Habashi & Hamed Eskandari Damaneh & John P. Tiefenbacher, 2022. "The impact of land use and land cover changes on soil erosion in western Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(3), pages 2185-2205, February.
    7. Turner, Katrine Grace & Anderson, Sharolyn & Gonzales-Chang, Mauricio & Costanza, Robert & Courville, Sasha & Dalgaard, Tommy & Dominati, Estelle & Kubiszewski, Ida & Ogilvy, Sue & Porfirio, Luciana &, 2016. "A review of methods, data, and models to assess changes in the value of ecosystem services from land degradation and restoration," Ecological Modelling, Elsevier, vol. 319(C), pages 190-207.
    8. Walmsley, Alena & Azadi, Hossein & Tomeckova, Katerina & Sklenicka, Petr, 2020. "Contrasting effects of land tenure on degradation of Cambisols and Luvisols: The case of Central Bohemia Region in the Czech Republic," Land Use Policy, Elsevier, vol. 99(C).
    9. Andrew K. Marondedze & Brigitta Schütt, 2020. "Assessment of Soil Erosion Using the RUSLE Model for the Epworth District of the Harare Metropolitan Province, Zimbabwe," Sustainability, MDPI, vol. 12(20), pages 1-24, October.
    10. Krause, Marlen S. & Nkonya, Ephraim & Griess, Verena C., 2017. "An economic valuation of ecosystem services based on perceptions of rural Ethiopian communities," Ecosystem Services, Elsevier, vol. 26(PA), pages 37-44.
    11. Richard J. Thomas & Emmanuelle Quillérou & Naomi Stewart, 2013. "The rewards of investing in sustainable land management," Working Papers hal-01954823, HAL.
    12. Bichaye Tesfaye & Monica Lengoiboni & Jaap Zevenbergen & Belay Simane, 2022. "Land Preservation Uptakes in the Escarpments of North-Eastern Ethiopia: Drivers, Sustainability, and Constraints," Land, MDPI, vol. 11(5), pages 1-27, May.
    13. Lulseged Tamene & Quang Le & Paul Vlek, 2014. "A Landscape Planning and Management Tool for Land and Water Resources Management: An Example Application in Northern Ethiopia," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(2), pages 407-424, January.
    14. Scholten, Lisa & Schuwirth, Nele & Reichert, Peter & Lienert, Judit, 2015. "Tackling uncertainty in multi-criteria decision analysis – An application to water supply infrastructure planning," European Journal of Operational Research, Elsevier, vol. 242(1), pages 243-260.
    15. Christina Francis & Paul Hansen & Bjarnhéðinn Guðlaugsson & David M. Ingram & R. Camilla Thomson, 2022. "Weighting Key Performance Indicators of Smart Local Energy Systems: A Discrete Choice Experiment," Energies, MDPI, vol. 15(24), pages 1-17, December.
    16. Oluwaseun Samuel Oduniyi, 2022. "Factors Driving the Adoption and Use Extent of Sustainable Land Management Practices in South Africa," Circular Economy and Sustainability,, Springer.
    17. Preusse, Verena & Wollni, Meike, 2021. "Adoption of sustainable agricultural practices in the context of urbanisation and environmental stress – Evidence from farmers in the rural-urban interface of Bangalore, India," 2021 Annual Meeting, August 1-3, Austin, Texas 312690, Agricultural and Applied Economics Association.
    18. Adamou, Pr. Rabani & Ibrahim, Boubacar & Bonkaney, Abdou Latif & Seyni, Abdoul Aziz & Idrissa, Mamoudou, 2021. "Niger - Land, climate, energy, agriculture and development: A study in the Sudano-Sahel Initiative for Regional Development, Jobs, and Food Security," Working Papers 308806, University of Bonn, Center for Development Research (ZEF).
    19. Andrea Caravaggio & Luigi De Cesare & Andrea Di Liddo, 2023. "A Differential Game for Optimal Water Price Management," Games, MDPI, vol. 14(2), pages 1-15, April.
    20. Corrado Battisti, 2018. "Preparing students for the operational environmental career: an integrated project-based road map for academic programs," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 8(4), pages 573-583, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:4:p:2244-:d:502056. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.